Today:

- Integral operators
- Demolish NLA using LRA

$$
K(A)=\|A\|\left\|A^{-1}\right\|
$$

1 Dense Matrices and Computation

Matvec: A slow algorithm
Matrix-vector multiplication: our first 'slow' algorithm.
$O\left(N^{2}\right)$ complexity.

$$
\beta_{i}=\sum_{j=1}^{N} A_{i j} \alpha_{i}
$$

Assume $A$ dense.

Kernel

$$
\begin{aligned}
\text { targets } & \text { sources } \\
\rightarrow \quad u\left(x_{i}\right) & =\sum_{i=1}^{N} G\left(x_{i}, y_{i}^{\prime}\right) \alpha_{i} \\
u(x) & =\sum_{i=1}^{N} G\left(x, y_{i}\right) \alpha_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { cs in } \\
& N(A)
\end{aligned}
$$

$$
\rightarrow u(x)=\int_{\Omega} G(x, y) \alpha(y) d y
$$


for example:

$$
V=\left(\begin{array}{cccc}
1 & x_{1} x_{1}^{2} & & x_{1}^{m} \\
& & & \\
1 & x_{n} x_{n}^{2} & & x_{n}^{m}
\end{array}\right)
$$

Matrices and Point Interactions

$$
A_{i j}=G\left(x_{i}, y_{j}\right)
$$

Does that actually change anything?

Matrices and Point Interactions

$$
A_{i j}=G\left(x_{i}, y_{j}\right)
$$

Graphically, too:

## Matrices and point interactions

$$
\psi\left(x_{i}\right)=\sum_{j=1}^{N} G\left(x_{i}, y_{j}\right) \varphi\left(y_{j}\right)
$$

This feels different.

## Point interaction matrices: Examples

What kind of matrices, then?

## Integral ‘Operators’

Why did we go through the trouble of rephrasing matvecs as

$$
\psi\left(x_{i}\right)=\sum_{j=1}^{N} G\left(x_{i}, y_{j}\right) \varphi\left(y_{j}\right) ?
$$

Cheaper Matvecs

$$
\psi\left(x_{i}\right)=\sum_{j=1}^{N} G\left(x_{i}, y_{j}\right) \varphi\left(y_{j}\right)
$$

| So what can we do to make evaluating this cheaper? |  |
| :--- | :--- |
| $\operatorname{rank} 1 \quad G(x, y)=n(x) \cdot v(y)$ | $A=n v^{\sigma}$ |
| $\operatorname{vank} k \quad G(x, y)=\sum_{i=1}^{k} u_{i}(x) \cdot v_{i}(y)$ | $A=\sum_{i=1}^{k} u_{i} \cdot v_{i}^{\sigma}$ |

Fast Dense Matvecs
Consider

$$
A_{i j}=u_{i} v_{j},
$$

let $\mathbf{u}=\left(u_{i}\right)$ and $\mathbf{v}=\left(v_{j}\right)$.

Can we compute $A \mathbf{x}$ quickly? (for a vector $\mathbf{x}$ )

$$
\begin{aligned}
& A \times \operatorname{rank} 1 \\
= & \left(n v^{\sigma}\right) x \\
= & \left.n\left(v^{\sigma} x\right) \quad \leftarrow O \ln \right)
\end{aligned}
$$

rank le: O(nle)

Fast Dense Matvecs

$$
A=\mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\mathbf{u}_{k} \mathbf{v}_{k}^{T}
$$

Does this generalize?

## Low-Rank Point Interaction Matrices

What would this:

$$
\psi\left(x_{i}\right)=\sum_{j=1}^{N} G\left(x_{i}, y_{j}\right) \varphi\left(y_{j}\right)
$$

look like for a low-rank matrix?

Numerical Rank

What would a numerical generalization of 'rank' look like?

linear dependence and ramble only mike sense with a tolerance

Let $\varepsilon>0$ be a folerance

$$
\begin{aligned}
& \|A-U \vee\|<\varepsilon \\
& \{ \\
& A \in \mathbb{R}^{n \times n} \quad u \in \mathbb{R}^{n \times k} \quad v \in \mathbb{R}^{k \times n}
\end{aligned}
$$

$\Rightarrow A$ at most aum. vank $k$

If $A \in \mathbb{R}^{m \times n}$
num rauk $(A, \varepsilon)$

$$
\begin{array}{r}
=\min \left\{u: \exists u \in \mathbb{R}^{m \times k}, v \in \mathbb{R}^{k \times n} ;\right. \\
\left.|A-u v|_{2} \leq \varepsilon\right\}
\end{array}
$$

(soon -motes)
In the Fohenius norm:

$$
\begin{gathered}
\min _{\operatorname{rank}(B)=k}|A-B|_{F}=\left|A-A_{k}\right|_{F}=\sqrt{\sigma_{k+1}^{2}+\cdots+\sigma_{h}} \\
A_{u}=\sum_{k=1}^{k} u_{i} \sigma_{i} v_{i}^{\sigma}
\end{gathered}
$$

## Constructing a tool

There is still a slight downside, though.

## Representation

What does all this have to do with (right-)preconditioning?

2 Tools for Low-Rank Linear Algebra

Rephrasing Low-Rank Approximations
SVD answers low-rank-approximation ('LRA') question. But: too expensive.
First, rephrase the LRA problem:

$$
A \approx \sqrt[V]{Q^{\top} A} \in \text { "projection form of } L n_{A}
$$

${ }^{n} A C A^{n}$

ONB

$$
\begin{aligned}
& Q=\left(\left.\begin{array}{lll}
1 & 1 & 1 \\
a_{1} & c_{2} & a_{2} \\
\mid & \left.\right|_{3}
\end{array} \right\rvert\,\right. \\
& Q Q^{+} x
\end{aligned}
$$

projection suto $q_{1} \ldots q_{3}$

If we have an LRA basis $Q$, can we compute an SVD?


$$
\begin{aligned}
& Q Q^{r} A V E^{-1} E V^{\sigma} \\
= & Q Q^{r} A(+ \text { appux) }
\end{aligned}
$$

Finding an LRA basis
How would we find an LRA basis?

$$
\left|A-Q Q^{\top} A\right|_{2}^{\approx} \min _{r_{\text {min }}(x) \leqslant k}|A-x|_{2}
$$

Inveshgate the power method
Suppose $A x_{i}=\lambda_{i} x_{i} ; \quad A \in$

$$
x_{i} \neq 0
$$

$$
\begin{aligned}
x= & \alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n} \\
A^{n} x= & \lambda_{1}^{n} \alpha_{1} x_{1}+\lambda_{2}^{n} \alpha_{1} x_{2}+\cdots+\lambda_{n}^{\ell} \alpha_{n} x_{n} \\
& \left|\lambda_{1}\right| 2\left|\lambda_{2}\right| \geqslant \cdots\left|\lambda_{n}\right|
\end{aligned}
$$

Giving up optimality
What problem should we actually solve then?

## Recap: The Power Method

How did the power method work again?

