

1 Dense Matrices and Computation

Matvec: A slow algorithm

Matrix-vector multiplication: our first 'slow' algorithm. $O(N^2)$ complexity.

 $\beta_i = \sum_{i=1} \underline{A_{ij}} \alpha_i$ d_{xyets} sources $y(x_i) = \sum_{i=1}^{N} G(x_i, y_i) \alpha_i$ Assume A dense. $u(x) = \sum_{i=1}^{N} G(x, y;) \propto i$ Kerne) u(x)= SG(x,y) x(y) dy Le concept Kernel density us in same concept

Matrices and Point Interactions

$$A_{ij}=G(x_i,y_j)$$

Does that actually change anything?

Matrices and Point Interactions

$$A_{ij}=G(x_i,y_j)$$

Graphically, too:

Matrices and point interactions

$$\psi(x_i) = \sum_{j=1}^N G(x_i, y_j) \varphi(y_j)$$

This *feels* different.

Point interaction matrices: Examples

What kind of matrices, then?

Integral 'Operators'

Why did we go through the trouble of rephrasing matvecs as

$$\psi(x_i) = \sum_{j=1}^N G(x_i, y_j) \varphi(y_j)?$$

Cheaper Matvecs

$$\psi(x_i) = \sum_{j=1}^N G(x_i, y_j) \varphi(y_j)$$

So what can we do to make evaluating this cheaper?

rank 1
$$G(x, y) = y(x) - y(y)$$

rank k $G(x, y) = \sum_{i=1}^{k} u_i(x) \cdot v_i(y)$

$$A = \sum_{i=1}^{4} u_i v_i^{\dagger}$$

Fast Dense Matvecs

Consider

$$A_{ij}=u_iv_j,$$

let $\mathbf{u} = (u_i)$ and $\mathbf{v} = (v_j)$.

Can we compute Ax quickly? (for a vector x)

$$A \times (v \operatorname{vank} 1)$$

$$= (v v^{\tau}) \times \operatorname{vank} k : O(u h)$$

$$= v (v^{\tau} \times) \subset O(u)$$

Fast Dense Matvecs

$$A = \mathbf{u}_1 \mathbf{v}_1^T + \cdots + \mathbf{u}_k \mathbf{v}_k^T$$

Does this generalize?

Low-Rank Point Interaction Matrices

What would this:

$$\psi(x_i) = \sum_{j=1}^N G(x_i, y_j) \varphi(y_j)$$

look like for a low-rank matrix?

Numerical Rank

What would a numerical generalization of 'rank' look like?

Let
$$\varepsilon > \partial$$
 be a followance
 $\|A - \Psi V\| = \varepsilon$
 \int
 $A \in \mathbb{R}^{h \times h}$ $U \in \mathbb{R}^{n \times k}$ $V \in \mathbb{R}^{k \times h}$
 $\Rightarrow A at most aum vank k$

$$\begin{aligned}
& | f \land e \mid \mathcal{R}^{m \times n} \\
& n \cup m \operatorname{rank}(A, e) \\
& = \min\{\mathcal{L}: \exists \mathcal{U} \in |\mathcal{R}^{m \times k}, \mathcal{V} \in |\mathcal{R}^{\ell, r}, \\
& | \land - \mathcal{U} \vee |_{\mathcal{L}} \leq e \end{aligned}$$

Eckart-Young-Mirsky Theorem

Oddly enough, with the help of the SVD:

$$A_{\mu} = \sum_{i=1}^{n} V_i \sigma_i V_i^{\sigma}$$

Constructing a tool

There is still a slight downside, though.

Representation

What does all this have to do with (right-)preconditioning?

2 Tools for Low-Rank Linear Algebra

Rephrasing Low-Rank Approximations

SVD answers low-rank-approximation ('LRA') question. But: too expensive.

First, rephrase the LRA problem:

Using LRA bases

An QQTA

If we have an LRA basis Q, can we compute an SVD?

$$A = U E V^{T}$$

$$A:hxn \qquad Q Q^{t} A = Q Q^{T} U E V^{T}$$

$$B:hxn \qquad Q Q^{t} A = Q Q^{T} U E V^{T}$$

$$W^{2} \qquad -1 \qquad B = Q^{t} A \qquad -1$$

$$W^{2} \qquad -2 \qquad Compute SVD \qquad B = \overline{U} E V^{T}$$

$$W^{2} \qquad -3 \qquad Set \qquad U = Q \overline{U} \qquad Q^{T} A = \overline{U} E V^{T}$$

$$W^{2} \qquad -3 \qquad Set \qquad V = Q \overline{U} \qquad Q^{T} A = \overline{U} E V^{T}$$

$$W^{2} \qquad -3 \qquad Set \qquad V = Q \overline{U} \qquad Q^{T} A = \overline{U} E V^{T}$$

QGEAVEZUT
$= Q Q^T A (\downarrow a \mu p A X)$

Finding an LRA basis

How would we find an LRA basis?

Giving up optimality

What problem should we actually solve then?

Recap: The Power Method

How did the power method work again?