

Num temsin 30 Julore expost sodale $= O(k^3)$ (K+1) (k+2) (k+5) num tems ~ (log z _) ~ ~ (log z _) S= dfd

 $\left(\Delta + k^{2} \right) u = 0$ $\gamma(t, \bar{x}) = W(\bar{x}) e^{-i\omega t}$ Dr u = Ju $\partial_y^2 = \left(-\partial_y^2 - h^2\right)_y$

Taylor and Error

How can we estimate the error in a Taylor expansion?

Connect Taylor and Low Rank

Can Taylor help us establish low rank of an interaction?

Local
$$\Psi(\vec{x}, \vec{y}) = \sum_{\substack{|\mathcal{U}| \leq h}} \frac{D^{\nu} \Psi(\vec{x}, \vec{y})}{\mathcal{V}!} = \hat{c}(\vec{x}, -\hat{c})^{\nu}$$

 $x : hargeling = \sum_{\substack{|\mathcal{U}| \leq h}} \frac{dft}{dcs} \int_{\mathcal{U}} \frac{dft}{dcs} = \frac{D^{\nu} \Psi(\vec{x}, \vec{y})}{\mathcal{V}!} = \hat{c}(\vec{y}, -\hat{c})^{\nu}$
 $M_{\nu} Ii pole: \Psi(\vec{x}, -\hat{y}) = \sum_{\substack{|\mathcal{U}| \leq h}} \frac{D^{\nu} \Psi(\vec{x}, -\hat{y})}{\mathcal{V}!} = \hat{c}(\vec{y}, -\hat{c})^{\nu}$
 $\int_{\mathcal{U}} Errov_{s} \left(\frac{df_{s}}{dc_{s}}\right)^{h+1}$

Local expansions as a Computational Tool

Low rank makes evaluating interactions cheap(er). Do local expansions help with that goal?

Taylor on Potentials, Again

Stare at that Taylor formula again.

On Rank Estimates

So how many terms do we need for a given precision ε ?

Estimated vs Actual Rank

Our rank estimate was off by a power of log ε . What gives?

Being Clever about Expansions

How could one be clever about expansions? (i.e. give examples)