Today

- HWZ/3 timeline
- Projects
- Mpole/local
- LA mpole/local
- fast a lys

Error in local: $\quad\left(\frac{d f t}{d c s}\right)^{\text {let }}$

$$
\text { mpole: }\left(\frac{d f s}{d c t}\right)^{\text {lett }}
$$

pith order accurate method

$$
\text { Error } \leq(h p
$$

Local: $\psi(x-y)=\sum_{|\nu| \leq k} \frac{\left.D^{\nu} \psi(x-y)\right|_{x=c}}{\nu!}(x-c)^{\nu}$
x: Jamuls
$y$ isounces

$$
\psi(x-y)=\sum_{|\nu| \leq k} \frac{\left.D_{y}^{\nu} \psi(x-y)\right|_{y=c}}{\nu!}(y-c)^{\nu}(-1)^{?}
$$

Dipole:

$$
\lim _{h \rightarrow 0} \frac{\psi(x+h)-\psi(x-h)}{h}
$$

## Taylor on Potentials, Again

Stare at that Taylor formula again.

On Rank Estimates
So how many terms do we need for a given precision $\varepsilon$ ?

## Estimated vs Actual Rank

Our rank estimate was off by a power of $\log \varepsilon$. What gives?

## Being Clever about Expansions

How could one be clever about expansions? (i.e. give examples)

Making Multipole/Local Expansions using Linear Algebra
Actual expansions seem vastly cheaper than LA approaches. Can this be fixed?

Using (A:
Complexity of analytical exp:
Form: Sk
Eval: $T k$
(K semis)


$$
T\left[\tilde{A}=P \tilde{A}_{\left(j_{i}\right]}\right.
$$

## Why Does the Proxy Trick Work?

In particular, how general is this? Does this work for any kernel?

Where are we now?
Summarize what we know about interaction ranks.

4 Near and Far: Separating out High-Rank Interactions

## Simple and Periodic: Ewald Summation

Want to evaluate potential from an infinite periodic grid of sources:

$$
\psi(\mathbf{x})=\sum_{\mathbf{i} \in \mathbb{Z}^{d}} \sum_{j=1}^{N_{\text {sre }}} G\left(\mathbf{x}, \mathbf{y}_{j}+\mathbf{i}\right) \varphi\left(\mathbf{y}_{j}\right)
$$

## Barnes-Hut: Putting Multipole Expansions to Work


(Figure credit: G. Martinsson, Boulder)
Want: All-pairs interaction.
Caution: In these (stolen) figures: targets sources.
Here: targets and sources.

