

Making Multipole/Local Expansions using Linear Algebra
Actual expansions seem vastly cheaper than LA approaches. Can this be fixed?

p

P Interationmal $\left(T_{[D]}, S\right) \vec{\sigma}$

Multipole via proxies:

Why Does the Proxy Trick Work?

In particular, how general is this? Does this work for any kernel?

Where are we now?
Summarize what we know about interaction ranks.

4 Near and Far: Separating out High-Rank Interactions

Simple and Periodic: Ewald Summation
Want to evaluate potential from an infinite periodic grid of sources:

$$
\psi(\mathbf{x})=\sum_{\mathbf{i} \in \mathbb{Z}^{d}} \sum_{j=1}^{N_{\text {sc }}} G\left(\mathbf{x}, \mathbf{y}_{j}+\mathbf{i}\right) \varphi\left(\mathbf{y}_{j}\right)
$$

$$
\begin{gathered}
d-1-p<-1 \\
d<p \\
\sum \frac{1}{n}
\end{gathered}
$$

Barnes-Hut: Putting Multipole Expansions to Work

(Figure credit: G. Martinsson, Boulder)
Want: All-pairs interaction.
Caution: In these (stolen) figures: targets sources.
Here: targets and sources.

Barnes-Hut: Putting Multipole Expansions to Work

(Figure credit: G. Martinsson, Boulder)

Barnes-Hut: Putting Multipole Expansions to Work

	\because	\%	\%		\square	\|ren
\bigcirc				\%		
	\% $\%$.	$\because \square$		\because	\cdots
	\because	: \because	\because		.	
\cdots	\%			-		
	\because			:	亿.	
\because						\%
.				\cdots	\because	
			\%	$\because \because$		
\%	\cdots			-		
				\because		
			\bigcirc			
		\because				

(Figure credit: G. Martinsson, Boulder)
For sake of discussion, choose one 'box' as targets.
Q: For which boxes can we then use multipole expansions?

Barnes-Hut: Putting Multipole Expansions to Work

(Figure credit: G. Martinsson, Boulder)
With this computational outline, what's the accuracy?

