$$
\begin{aligned}
& \left.\begin{array}{l}
\text { TonAY: } \\
\text { - Barnes.thil } \\
\text { - Fast Multipole }
\end{array} \right\rvert\, A x \rightarrow \text {, } \\
& \text { - Direct solver } \quad b \rightarrow A^{-1} b \\
& \text { Eov inkeraction mabrices }
\end{aligned}
$$

Project submissicon Lopistics

Barnes-Hut: Putting Multipole Expansions to Work

$$
g \cdot m N_{f g t m}
$$

(Figure credit: G. Martinsson, Boulder)

With this computational outline, what's the accuracy?

Mulltipole eror estimate: $\quad\left(\frac{d f s}{d c t}\right)^{p+1}$ Local error estimate: $\quad\left(\frac{d f f}{d c s}\right)^{p+1}$

$$
d f_{s}=\frac{\sqrt{2}}{2}
$$

$$
\text { dct }=\frac{3}{2}
$$

mpole enorest: $\left(\frac{\sqrt{2}}{3}\right)^{p+1}$

$$
\left(\frac{\sqrt{3}}{3}\right)^{p+1}
$$

	Evalnatempole
$N \cdot \frac{N}{m}$	K

N: \# particles
wo: \# particles per box

Barnes-Hut (single-level): Computational Cost

What's the cost of this algorithm?

Barnes-Hut: Putting Multipole Expansions to Work

Levels
$\Rightarrow 4^{2}$ boxes

males sone for $O(1)$ parties
par box
where

$$
O(1) \approx 30
$$

$27=6^{2}-3^{2}$ source boxes on that
(Figure credit: G. Martinsson, Boulder) lever

How many levels?

Forning all multipsles: $O(N \log N)$ Evaluahry all mpdes: $27^{\circ} \mathrm{C} \cdot \frac{\mathrm{N}}{\mathrm{m}}$

Barnes-Hut: Putting Multipole Expansions to Work

(Figure credit: G. Martinsson, Boulder)
Want to evaluate all the source interactions with the targets in the box.
Q: What would be good sizes for source boxes? What's the requirement?

Barnes-Hut: Putting Multipole Expansions to Work

(Figure credit: G. Martinsson, Boulder)
Data from which of these boxes could we bring in using multipole expansions? Does that depend on the type of expansion? (Taylor/special function vs skeletons)

Barnes-Hut: Putting Multipole Expansions to Work

(Figure credit: G. Martinsson, Boulder)
What properties do these boxes have?

Barnes-Hut: Putting Multipole Expansions to Work

(Figure credit: G. Martinsson, Boulder)
What is the cost of evaluating the target potentials, assuming that we know the multipole expansions already?

Barnes-Hut: Putting Multipole Expansions to Work

		\cdots	-	- 8°	$\mid{ }^{\circ} \cdot 8$		
	\bigcirc	\because	\square°	\% ${ }^{\circ}$	\bullet	\%	${ }^{-}$
	\because	©	\cdots	\because	-8,	\bigcirc	\bigcirc
0			\cdots	\bigcirc		\bigcirc	\cdots
	$\bullet \circ$	-		$8 \bullet$	-	-\%	
-		-	\therefore		-	-	\bigcirc
	$\because \text { ? }$	-	\cdots	-		$\because 0^{\circ}$	
	${ }^{8}$	\bullet.	$\%$	O\%	\because	${ }^{\circ}$	${ }^{8} 0^{\circ}{ }^{\circ}$

(Figure credit: G. Martinsson, Boulder)
Summarize the algorithm (so far) and the associated cost.

Barnes-Hut: Putting Multipole Expansions to Work

(Figure credit: G. Martinsson, Boulder)
How could this process be sped up?

Barnes-Hut: Putting Multipole Expansions to Work

(Figure credit: G. Martinsson, Boulder)
To get a new 'big' multipole from a 'small' multipole, we need a new mathematical tool.

Cost of Multi-Level Barnes-Hut

Using Multipole-to-Local

Barnes-MuL

(Figure credit: G. Martinsson, Boulder)
Come up with an algorithm that computes the interaction in the figure.

Using Multipole-to-Local

(Figure credit: G. Martinsson, Boulder)
Assuming we retain information from the previous level, how can we obtain a valid local expansion on the target box?

Define ‘Interaction List’

For a box b, the interaction list l_{b} consists of all boxes b^{\prime} so that

The Fast Multipole Method ('FMM')

Upward pass

1. Build tree
2. Compute interaction lists
3. Compute lowest-level multipoles from sources
4. Loop over levels $\ell=L$ $1, \ldots, 2$:
(a) Compute multipoles at level ℓ by $\mathrm{mp} \rightarrow$ mp

Downward pass

1. Loop over levels $\ell=$ $2,3, \ldots, L-1$:
(a) Loop over boxes b on level ℓ :
i. Add contrib from I_{b} to local expansion by $\mathrm{mp} \rightarrow \mathrm{loc}$
ii. Add contrib from parent to local exp by loc \rightarrow loc
2. Evaluate local expansion and direct contrib from 9 neighbors.

Overall algorithm: Now $O(N)$ complexity.

