TODAY
Direct solver
DE BU PS
Analysis

A Matrix View of Low-Rank Interaction
Only parts of the matrix are low-rank! What does this look like from a matrix perspective?

Block-separable matrices
How do we represent the low-rank structure of a matrix like this?

$$
A=\left(\begin{array}{cccc}
D_{1} & A_{12} & A_{13} & A_{14} \\
A_{21} & D_{2} & A_{23} & A_{24} \\
A_{31} & A_{32} & D_{3} & A_{34} \\
A_{41} & A_{42} & A_{43} & D_{4}
\end{array}\right)
$$

where $A_{i j}$ has low-rank structure?
\rightarrow HBS: Hierarchically block separable

Block-Separable Matrices

A block-separable matrix looks like this:

$$
A=\left(\begin{array}{cccc}
D_{1} & P_{1} \tilde{A}_{12} \Pi_{2} & P_{1} \tilde{A}_{13} \Pi_{3} & P_{1} \tilde{A}_{14} \Pi_{4} \\
P_{2} \tilde{A}_{21} \Pi_{1} & D_{2} & P_{2} \tilde{A}_{23} \Pi_{3} & P_{2} \tilde{A}_{24} \Pi_{4} \\
P_{3} \tilde{A}_{31} \Pi_{1} & P_{3} \tilde{A}_{32} \Pi_{2} & D_{3} & P_{3} \tilde{A}_{34} \Pi_{4} \\
P_{4} \tilde{A}_{41} \Pi_{1} & P_{4} \tilde{A}_{42} \Pi_{2} & P_{4} \tilde{A}_{43} \Pi_{3} & D_{4}
\end{array}\right)
$$

Here:

- $\tilde{A}_{i j}$ smaller than $A_{i j}$
- D_{i} has full rank (not necessarily diagonal)
- P_{i} shared for entire row
- Π_{i} shared for entire column

Q: Why is it called that?

Engineering a cheap solve

Use the following notation:

$$
B=\left(\begin{array}{cccc}
0 & P_{1} \tilde{A}_{12} & P_{1} \tilde{A}_{13} & P_{1} \tilde{A}_{14} \\
P_{2} \tilde{A}_{21} & 0 & P_{2} \tilde{A}_{23} & P_{2} \tilde{A}_{24} \\
P_{3} \tilde{A}_{31} & P_{3} \tilde{A}_{32} & 0 & P_{3} \tilde{A}_{34} \\
P_{4} \tilde{A}_{41} & P_{4} \tilde{A}_{42} & P_{4} \tilde{A}_{43} & 0
\end{array}\right)
$$

and

$$
D=\left(\begin{array}{cccc}
D_{1} & & & \\
& D_{2} & & \\
& & D_{3} & \\
& & & D_{4}
\end{array}\right), \quad \Pi=\left(\begin{array}{llll}
\Pi_{1} & & & \\
& \Pi_{2} & & \\
& & \Pi_{3} & \\
& & & \Pi_{4}
\end{array}\right) .
$$

Then $A=D+B \Pi$ and

$$
\left(\begin{array}{cc}
D & B \\
-\Pi & I d
\end{array}\right)\binom{x}{\tilde{x}}=\binom{\mathbf{b}}{0} \sim \neg D x+B \pi x
$$

is equivalent to $A \mathbf{x}=\mathbf{b}$.
Q: What are the matrix sizes? The vector lengths of \mathbf{x} and $\tilde{\mathbf{x}}$?
(Π : small \times large)

$$
\begin{aligned}
& \left(\begin{array}{cc}
\pi D^{-1} D & \pi D^{-1} D \\
-\pi & \mid d
\end{array}\right) \cdot\binom{x}{\tilde{x}}=\binom{\pi D^{-1} b}{0} \sum 1 \cdot \pi D^{-1} \\
& \left(1 d+\pi D^{-1} B\right) \tilde{x}=\pi D^{-1} b
\end{aligned}
$$

All non sex o earios of \# $\# D^{-1} B$ look like

$$
\begin{aligned}
& \pi_{i} D_{i}^{-1} P_{i} \tilde{A}_{i j} \\
& \tilde{A}_{i i}=\left(\pi_{i} D_{i}^{-1} P_{i}\right)^{-1}
\end{aligned}\left(\begin{array}{l}
\tilde{A}_{2} \tilde{A}_{13} \\
\end{array}\right.
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
\tilde{A}_{11} \widetilde{A}_{12} & \\
& & \\
& & \ldots
\end{array}\right) \cdot\left(1 d+\pi D^{-1} B\right) \tilde{x}=\left(\begin{array}{ll}
\tilde{A}_{11} & \\
& \\
& \\
& \\
& \\
& \\
44
\end{array}\right) \pi D^{-1} b
\end{aligned}
$$

Uncompressed solve cost: $(4 m)^{3}$ Compressed
$(4 k)^{3}$

$$
\left(\frac{k}{m}\right)^{3}
$$

Solving with Block-Separable Matrices

In order to get $O(N)$ complexity, could we apply this procedure recursively?

\downarrow Compress

\downarrow Compress
Cluster

Figure credit: G. Martinsson, Boulder

Telescoping Factorization

Figure credit: G. Martinsson, Boulder
Observations?

5 Outlook: Building a Fast PDE Solver

PDEs: Simple Ones First, More Complicated Ones Later

- Steady-state $\partial_{t} u=0$ of wave propagation, heat conduction
Electric potential u for applied voltage
- Minimal
surfaces/"soap films"
- ∇u as velocity of incompressible flow

Heat:

$$
\partial_{f} n=J n
$$

- Assume timeharmonic behavior $\tilde{u}=e^{ \pm i \omega t} u(x)$ in equation:

$$
\partial_{t}^{2} \tilde{u}=\triangle \tilde{u}
$$

- Sign in \tilde{u} determines direction of wave: Incoming/outgoing if free-space problem
- Applications: Propagaton of sound, electromagnetic waves

aka. Free space Green's Functions $\int G(x, y) g(y) d y=$ solution to the BUP

Quadrupole

How do you assign a precise meaning to the statement with the δ-function?

Why care about Green's functions?

What is a non-free-space Green's function? I.e. one for a specific domain?

Why not just use domain Green's functions?

What if we don't know a Green's function for our PDE... at all?

Fundamental solutions

Laplace

$$
G(x)=\left\{\begin{array}{ll}
\frac{1}{-2 \pi} \log |x| & \text { 2D } \\
\frac{1}{4 \pi} \frac{1}{|x|} & \text { 3D }
\end{array} \quad G(x)= \begin{cases}\frac{i}{4} H_{0}^{1}(k|x|) & 2 \mathrm{D} \\
\frac{1}{4 \pi} \frac{e^{i k|x|}}{|x|} & 3 \mathrm{D}\end{cases}\right.
$$

Helmholtz
Monopole

$$
\frac{\partial}{\partial_{x}} G(x)
$$

Dipole

Layer Potentials

$$
\begin{aligned}
& \left(S_{k} \sigma\right)(x):=\int_{\Gamma} G_{k}(x-y) \sigma(y) d s_{y} \\
& \left(S_{k}^{\prime} \sigma\right)(x):=n \cdot \nabla_{x} P V \int_{\Gamma} G_{k}(x-y) \sigma(y) d s_{y} \\
& \left(D_{k} \sigma\right)(x):=P V \int_{\Gamma} n \cdot \nabla_{y} G_{k}(x-y) \sigma(y) d s_{y} \\
& \left(D_{k}^{\prime} \sigma\right)(x):=n \cdot \nabla_{x} f \cdot p \cdot \int_{\Gamma} n \cdot \nabla_{y} G_{k}(x-y) \sigma(y) d s_{y}
\end{aligned}
$$

- G_{k} is the Helmholtz kernel $(k=0 \rightarrow$ Laplace $)$
- Operators-map function σ on「 to...
- ...function on \mathbb{R}^{n}
- ...function on 「 (in particular)
- Alternate ("standard") nomenclature:

Ours	Theirs
S	V
D	K
S^{\prime}	K^{\prime}
D^{\prime}	T

- $S^{\prime \prime}$ (and higher) analogously
- Called layer potentials:
- S is called the single-layer potential
- D is called the double-layer potential
- (Show pictures using pytential/examples/layerpot.py, observe continuity properties.)

How does this actually solve a PDE?

Solve a (interior Laplace Dirichlet) BVP, $\partial \Omega=\Gamma$

$$
\Delta u=0 \quad \text { in } \Omega,\left.\quad u\right|_{\Gamma}=\left.f\right|_{\Gamma} .
$$

1. Pick representation:

$$
u(x):=(S \sigma)(x)
$$

2. Take (interior) limit onto Γ :

$$
\left.u\right|_{\Gamma}=S \sigma
$$

3. Enforce BC:

$$
\left.u\right|_{\Gamma}=f
$$

4. Solve resulting linear system:

$$
S \sigma=f
$$

(quickly-using the methods we've developed: It is precisely of the form that suits our fast algorithms!)
5. Obtain PDE solution in Ω by evaluating representation

