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Fundamental Solutions
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Why care about Green's functions?

What is a non-free-space Green's function? l.e. one for a specific domain?

Why not just use domain Green's functions?

What if we don't know a Green's function for our PDE... at all?
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Layer Potentials

(Si0)) 1= [ Glox = y)aly)ds
(S;0)(x) :==n- VXPV/r Gk(x — y)o(y)ds,

(Dyo)(x) :== PV/rn -V, Gi(x — y)o(y)ds,

(D,o)(x) :=n- fo.p./rn -V, Gi(x — y)o(y)ds,

e G is the Helmholtz kernel (k = 0 — Laplace)
e Operators—map function o on I to...

— ...function on R”

— ...function on T (in particular)

e Alternate (“standard”) nomenclature:



Ours | Theirs
S|V
D| K
S K
D'| T

e S” (and higher) analogously

e Called /ayer potentials:
— S is called the single-layer potential
— D is called the double-layer potential

e (Show pictures using pytential/examples/layerpot.py, observe continuity
properties.)



How does this actually solve a PDE?

Solve a (interior Laplace Dirichlet) BVP, 02 =T
Au=0 inQ, U|r:f‘r.

1. Pick representation:

u(x) := (So)(x)

2. Take (interior) limit onto I':

U|r = So
3. Enforce BC:

U|r =f
4. Solve resulting linear system:

So=f

(quickly—using the methods we've developed: It is precisely of the form that suits
our fast algorithms!)

5. Obtain PDE solution in €2 by evaluating representation



Observations:
e One can choose representations relatively freely. Only constraints:
— Can | get to the solution with this representation?
|.e. is the solution I'm looking for represented?
— Is the resulting integral equation solvable?
Q: How would we know?

e Some representations lead to better integral equations than others. The one above
is actually terrible (both theoretically and practically).

Fix above: Use u(x) = Do(x) instead of u(x) = So(x).

Q: How do you tell a good representation from a bad one?
e Need to actually evaluate So(x) or Do(x)...

Q: How?

— Need some theory



6 Going Infinite: Integral Operators and Functional
Analysis

6.1 Norms and Operators



Norms

Definition 1 (Norm) A norm || - || maps an element of a vector space into [0, 00).
It satisfies:

o x| =0 x=0

o [[Ax]l = [Alllx]

o lx+yll < lIx]| + Iyl (triangle inequality)

Can create norm from inner product: ||x|| = /(x, x)



Function Spaces

Name some function spaces with their norms.




Convergence

[ Name some ways in which a sequence can ‘converge’.




Operators

X, Y: Banach spaces
A : X — Y linear operator

Definition 2 (Operator norm) ||A|| := sup{||Ax]|| : x € X, |

x| =1}

Theorem 1 ||A|| bounded < A continuous




Operators: Examples

Which of these is bounded as an operator on functions on the real line?
e Multiplication by a scalar

“Left shift”

Fourier transform

Differentiation

Integration

Integral operators




