TODAY	HWYOW
	Voie de monasals
	$A \vec{x} = t$

Fundamental Solutions

Laplace Helmholtz $\triangle u + k^2 u = \delta$ $\lambda h = \delta$ Monopole Dipole M = G * f + n $\Delta(G * \not + \widetilde{\alpha}) = \not$ $\Delta(G*P) = (\Delta G)*P$ = G*P =Quadrupole aka. Free space Green's Functions $\hat{c} = a - 6 \star F$ How do you assign a precise meaning to the statement with the δ -function?

lin
$$\tilde{n}(x) = \tilde{g}(x)$$

 $x \rightarrow 2 L^{-}$
l'm $\int G(x-y) o(y) dy = \tilde{g}(x)$
 $x \rightarrow 2 L^{-}$
 $\int \tilde{u} = 0$
 $\int \tilde{u} = 0$
lim $\int \log[x-y] = (y) dy - \tilde{g}(x)$
 Q nestings:
 $- Computational expanse$
 $- Computational expanse$
 $- Conditioning 7 organscher structure
 $- Conditioning 8 organscher structure
 $- Conditioning 9 organscher structure
 $- Conditioning 8 organscher structure
 $- Conditioning 9 organscher structure
 $- Conditioning 8 organsc$$

 $\Delta h^{\sim} 0$ NE Do $\Delta(\mathcal{D}_{\mathsf{x}} \mathcal{G}) \simeq \partial_{\mathsf{x}} (\Delta \mathcal{G}) \simeq \partial_{\mathsf{x}} \mathcal{O} = \mathcal{O}$ \tilde{g} $t \neq 0$ $t = \frac{1}{2}$ $t = \frac{1}{2}$

Why care about Green's functions?

What is a non-free-space Green's function? I.e. one for a specific domain?

Why not just use domain Green's functions?

What if we don't know a Green's function for our PDE... at all?

Fundamental solutions

Laplace

Helmholtz

Monopole

Dipole

$$G(x) = \begin{cases} \frac{1}{-2\pi} \log |x| & 2D\\ \frac{1}{4\pi} \frac{1}{|x|} & 3D \end{cases} \qquad G(x) = \begin{cases} \frac{i}{4} H_0^1(k|x|) & 2D\\ \frac{1}{4\pi} \frac{e^{ik|x|}}{|x|} & 3D \end{cases}$$
$$\frac{\partial}{\partial_x} G(x) \qquad \qquad \frac{\partial}{\partial_x} G(x)$$

Layer Potentials

$$(S_k\sigma)(x) := \int_{\Gamma} G_k(x-y)\sigma(y)ds_y$$

$$(S'_k\sigma)(x) := n \cdot \nabla_x PV \int_{\Gamma} G_k(x-y)\sigma(y)ds_y$$

$$(D_k\sigma)(x) := PV \int_{\Gamma} n \cdot \nabla_y G_k(x-y)\sigma(y)ds_y$$

$$(D'_k\sigma)(x) := n \cdot \nabla_x f.p. \int_{\Gamma} n \cdot \nabla_y G_k(x-y)\sigma(y)ds_y$$

- G_k is the Helmholtz kernel ($k = 0 \rightarrow Laplace$)
- Operators–map function σ on Γ to...
 - …function on \mathbb{R}^n
 - ...function on Γ (in particular)
- Alternate ("standard") nomenclature:

- S'' (and higher) analogously
- Called *layer potentials*:
 - -S is called the *single-layer potential*
 - D is called the *double-layer potential*
- (Show pictures using pytential/examples/layerpot.py, observe continuity properties.)

How does this actually solve a PDE?

Solve a (interior Laplace Dirichlet) BVP, $\partial \Omega = \Gamma$

$$riangle u=0$$
 in Ω , $u|_{\Gamma}=f|_{\Gamma}$.

1. Pick *representation*:

$$u(x) := (S\sigma)(x)$$

2. Take (interior) limit onto Γ :

$$u|_{\Gamma} = S\sigma$$

3. Enforce BC:

$$u|_{\Gamma} = f$$

4. Solve resulting linear system:

$$S\sigma = f$$

(quickly-using the methods we've developed: It is precisely of the form that suits our fast algorithms!)

5. Obtain PDE solution in Ω by evaluating representation

Observations:

- One can choose representations relatively freely. Only constraints:
 - Can I get to the solution with this representation?
 - I.e. is the solution I'm looking for represented?
 - Is the resulting integral equation solvable?
 - Q: How would we know?
- Some representations lead to better integral equations than others. The one above is actually terrible (both theoretically and practically).

Fix above: Use $u(x) = D\sigma(x)$ instead of $u(x) = S\sigma(x)$.

Q: How do you tell a good representation from a bad one?

• Need to actually *evaluate* $S\sigma(x)$ or $D\sigma(x)$...

Q: How?

 \rightarrow Need some theory

- 6 Going Infinite: Integral Operators and Functional Analysis
- 6.1 Norms and Operators

Norms

Definition 1 (Norm) A norm $\|\cdot\|$ maps an element of a vector space into $[0, \infty)$. It satisfies:

- $||x|| = 0 \Leftrightarrow x = 0$
- $\|\lambda x\| = |\lambda| \|x\|$
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality)

Can create norm from *inner product*: $||x|| = \sqrt{\langle x, x \rangle}$

Function Spaces

Name some function spaces with their norms.

Convergence

Name some ways in which a sequence can 'converge'.

Operators

- X, Y: Banach spaces
- $A: X \rightarrow Y$ linear operator

Definition 2 (Operator norm) $||A|| := \sup\{||Ax|| : x \in X, ||x|| = 1\}$

Theorem 1 ||A|| bounded \Leftrightarrow A continuous

Operators: Examples

Which of these is bounded as an operator on functions on the real line?

- Multiplication by a scalar
- "Left shift"
- Fourier transform
- Differentiation
- Integration
- Integral operators