$$(A \overrightarrow{p}): - \overrightarrow{h} \overrightarrow{v} \overrightarrow{p}$$

$$A f(x) = u(\overrightarrow{x}) \int v(\overrightarrow{y}) f(y) dy \qquad \begin{array}{c} & PtA p p e on^{n} \\ & A \times = b \\$$

How does this actually solve a PDE?

Solve a (interior Laplace Dirichlet) BVP, $\partial \Omega = \Gamma$

$$riangle u=0$$
 in Ω , $u|_{\Gamma}=f|_{\Gamma}$.

1. Pick *representation*:

$$u(x) := (S\sigma)(x)$$

2. Take (interior) limit onto Γ :

$$u|_{\Gamma} = S\sigma$$

3. Enforce BC:

$$u|_{\Gamma} = f$$

4. Solve resulting linear system:

$$S\sigma = f$$

(quickly-using the methods we've developed: It is precisely of the form that suits our fast algorithms!)

5. Obtain PDE solution in Ω by evaluating representation

Observations:

- One can choose representations relatively freely. Only constraints:
 - Can I get to the solution with this representation?
 - I.e. is the solution I'm looking for represented?
 - Is the resulting integral equation solvable?
 - Q: How would we know?
- Some representations lead to better integral equations than others. The one above is actually terrible (both theoretically and practically).

Fix above: Use $u(x) = D\sigma(x)$ instead of $u(x) = S\sigma(x)$.

Q: How do you tell a good representation from a bad one?

• Need to actually *evaluate* $S\sigma(x)$ or $D\sigma(x)$...

Q: How?

 \rightarrow Need some theory

- 6 Going Infinite: Integral Operators and Functional Analysis
- 6.1 Norms and Operators

Norms

Definition 1 (Norm) A norm $\|\cdot\|$ maps an element of a vector space into $[0, \infty)$. It satisfies:

- $||x|| = 0 \Leftrightarrow x = 0$
- $\|\lambda x\| = |\lambda| \|x\|$
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality)

Can create norm from *inner product*: $||x|| = \sqrt{\langle x, x \rangle}$

Function Spaces

Name some function spaces with their norms.

Convergence

Name some ways in which a sequence can 'converge'.

Operators

- X, Y: Banach spaces
- $A: X \to Y$ linear operator

Definition 2 (Operator norm) $||A|| := \sup\{||Ax|| : x \in X, ||x|| = 1\}$

A(~x+By)= LAx+BAy

Theorem 1 ||A|| bounded \Leftrightarrow A continuous

Operators: Examples

Which of these is bounded as an operator on functions on the real line?

- Multiplication by a scalar
- "Left shift"
- Fourier transform
- Differentiation
- Integration
- Integral operators

Integral Operators: Zoology

Volterra	Fredholm
$\int_{a}^{x} k(x, y) f(y) dy = g(x)$	$\int_G k(x, y) f(y) dy = g(x)$
	Second kind

Connections to Complex Variables

Complex analysis is *full* of integral operators:

• Cauchy's integral formula:

$$f(a) = \frac{1}{2\pi i} \oint_{\gamma} \frac{1}{z-a} f(z) \, dz$$

• Cauchy's differentiation formula:

$$f^{(n)}(a) = rac{n!}{2\pi i} \oint_{\gamma} rac{1}{(z-a)^{n+1}} f(z) \, dz$$

Integral Operators: Boundedness (=Continuity)

Theorem 2 (Continuous kernel \Rightarrow **bounded)** $G \subset \mathbb{R}^n$ closed, bounded ("compact"), $K \in C(G^2)$. Let

$$(A\phi)(x) := \int_{\mathcal{G}} K(x, y)\phi(y)dy.$$

Then

$$\|A\|_{\infty} = \max_{x \in G} \int_{G} |K(x, y)| dy.$$

Show ' \leq '.

Solving Integral Equations

Given

$$(A\phi)(x) := \int_{\mathcal{G}} K(x,y)\varphi(y)dy,$$

are we allowed to ask for a solution of

$$(\mathsf{Id} + A)\varphi = g?$$

Attempt 1: The Neumann series

Want to solve

$$\varphi - A\varphi = (I - A)\varphi = g.$$

Formally:

$$\varphi = (I - A)^{-1}g.$$

What does that remind you of?

6.2 Compactness

Compact sets

Definition 3 (Precompact/Relatively compact) $M \subseteq X$ precompact: \Leftrightarrow all sequences $(x_k) \subset M$ contain a subsequence converging in X

Definition 4 (Compact/'Sequentially complete') $M \subseteq X$ compact: \Leftrightarrow all sequences $(x_k) \subset M$ contain a subsequence converging in M

- $\bullet \ \mathsf{Precompact} \Rightarrow \mathsf{bounded}$
- Precompact ⇔ bounded (finite dim. only!)

Counterexample?

Compact Operators

X, Y: Banach spaces

Definition 5 (Compact operator) $T : X \to Y$ *is* compact : \Leftrightarrow T(bounded set) *is precompact.*

- *T*, *S* compact $\Rightarrow \alpha T + \beta S$ compact
- One of T, S compact \Rightarrow S \circ T compact
- T_n all compact, $T_n \rightarrow T$ in operator norm $\Rightarrow T$ compact

Questions:

- Let dim $T(X) < \infty$. Is T compact?
- Is the identity operator compact?