TODAY:
HW2 graded

- Functional Analysis
G compact operators

$$
\begin{aligned}
& (A \vec{f})_{i}=\vec{n} \vec{v}^{\top} \vec{f} \\
& A f(x)=u(\vec{x}) \int_{\mathbb{R}^{2}} v(\vec{y}) f(y) d y \underbrace{}_{ح \text { MA } x=1 \text { person }}{ }^{4} \\
& \text { A: }\left(\underset{\substack{\left(\mathbb{R}^{2}\right) \\
\text { neo } \\
\text { Function }}}{ } \rightarrow C\left(\mathbb{R}^{2}\right) \quad \left\lvert\, \begin{array}{l}
A x=b \\
\text { spies? } \\
A M_{y}=b
\end{array}\right.\right. \\
& \text { spaces? } \\
& S_{\sigma}(x)=\int_{C} G(x, y) \sigma(y) d y \\
& g(y)=\lim _{x \rightarrow \Gamma_{+}} u(x) \\
& D \sigma(x)=\int \frac{\partial}{\partial n_{y}} G(x, y) \sigma(y) d y \\
& =+\frac{1}{2} \sigma+D \delta(x)
\end{aligned}
$$

Layer potential, as ciperators from the curve onto the curve: domain/ronge?
Integral equations: solvabily?
\rightarrow compact o percolors
\rightarrow Fredholm alternative (for existence??
Potential theory
\rightarrow jumprelations.
c) uniqueness

$$
\Delta u+k^{2} n=0
$$

How does this actually solve a PDE?

Solve a (interior Laplace Dirichlet) BVP, $\partial \Omega=\Gamma$

$$
\Delta u=0 \quad \text { in } \Omega,\left.\quad u\right|_{\Gamma}=\left.f\right|_{\Gamma} .
$$

1. Pick representation:

$$
u(x):=(S \sigma)(x)
$$

2. Take (interior) limit onto Γ :

$$
\left.u\right|_{\Gamma}=S \sigma
$$

3. Enforce BC:

$$
\left.u\right|_{\Gamma}=f
$$

4. Solve resulting linear system:

$$
S \sigma=f
$$

(quickly-using the methods we've developed: It is precisely of the form that suits our fast algorithms!)
5. Obtain PDE solution in Ω by evaluating representation

Observations:

- One can choose representations relatively freely. Only constraints:
- Can I get to the solution with this representation?
I.e. is the solution I'm looking for represented?
- Is the resulting integral equation solvable?

Q: How would we know?

- Some representations lead to better integral equations than others. The one above is actually terrible (both theoretically and practically).

Fix above: Use $u(x)=D \sigma(x)$ instead of $u(x)=S \sigma(x)$.
Q: How do you tell a good representation from a bad one?

- Need to actually evaluate $S \sigma(x)$ or $D \sigma(x) \ldots$

Q: How?
\rightarrow Need some theory

6 Going Infinite: Integral Operators and Functional Analysis
6.1 Norms and Operators

Norms

Definition 1 (Norm) A norm $\|\cdot\|$ maps an element of a vector space into $[0, \infty)$. It satisfies:

- $\|x\|=0 \Leftrightarrow x=0$
- $\|\lambda x\|=|\lambda|\|x\|$
- $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality)

Can create norm from inner product: $\|x\|=\sqrt{\langle x, x\rangle}$

Function Spaces

Name some function spaces with their norms.

$$
\begin{array}{ll}
L_{2}(\Omega) ; & \|f\|_{2}=\sqrt{\int_{x} \mid p^{2} d x} \\
L_{p}(\Omega) & \| p h_{p}=\sqrt[p]{S|f|^{*} d x}
\end{array}
$$

1
ω
$\left|f l_{0}=\sup \right| f \mid$
C^{0}; cots, and $\|f\|_{\infty}<\infty$

Convergence
Name some ways in which a sequence can 'converge'.
f, f

$$
\forall \varepsilon \geqslant 0 \quad \exists n_{0} \forall v_{n} \geqslant n_{0}:\left\|P_{h}-f\right\|<\varepsilon
$$

Cauchy sequence.

$$
\frac{\forall \varepsilon>0 \quad \exists n_{0} \forall n, m \geqslant n_{0}:\left\|f_{n}-f_{m}\right\|<\varepsilon}{3 ., 3.1,3.14,3.141 \in \mathbb{Q}}
$$

space
Completeness/Banach every Canchy sapuence
has a linit

Operators

Operators: Examples

Which of these is bounded as an operator on functions on the real line?

- Multiplication by a scalar
- "Left shift"
- Fourier transform
- Differentiation
- Integration
- Integral operators

Integral Operators: Zoology

$$
\begin{array}{l|l}
\text { Volterra } & \text { Fredholm } \\
\hline \int_{a}^{x} k(x, y) f(y) d y=g(x) & \int_{G} k(x, y) f(y) d y=g(x) \\
\text { First kind } & \text { Second kind } \\
\hline \int_{G} k(x, y) f(y) d y=g(x) & f(x)+\int_{G} k(x, y) f(y) d y=g(x)
\end{array}
$$

Connections to Complex Variables

Complex analysis is full of integral operators:

- Cauchy's integral formula:

$$
f(a)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{1}{z-a} f(z) d z
$$

- Cauchy's differentiation formula:

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \oint_{\gamma} \frac{1}{(z-a)^{n+1}} f(z) d z
$$

Integral Operators: Boundedness (=Continuity)

Theorem 2 (Continuous kernel \Rightarrow bounded) $G \subset \mathbb{R}^{n}$ closed, bounded ("compact"), $K \in C\left(G^{2}\right)$. Let

$$
(A \phi)(x):=\int_{G} K(x, y) \phi(y) d y .
$$

Then

$$
\|A\|_{\infty}=\max _{x \in G} \int_{G}|K(x, y)| d y
$$

Show ' \leqslant '.

$$
\begin{aligned}
(I-A) f & =g \\
f & =(I-A)^{-1} g
\end{aligned}
$$

Solving Integral Equations

Given

$$
(A \phi)(x):=\int_{G} K(x, y) \varphi(y) d y
$$

are we allowed to ask for a solution of

$$
(\mathrm{Id}+A) \varphi=g ?
$$

Attempt 1: The Neumann series

Want to solve

$$
\varphi-A \varphi=(I-A) \varphi=g .
$$

Formally:

$$
\varphi=(I-A)^{-1} g .
$$

What does that remind you of?
6.2 Compactness

Compact sets

Definition 3 (Precompact/Relatively compact) $M \subseteq X$ precompact: \Leftrightarrow all sequences $\left(x_{k}\right) \subset M$ contain a subsequence converging in X

Definition 4 (Compact/'Sequentially complete') $M \subseteq X$ compact: \Leftrightarrow all sequences $\left(x_{k}\right) \subset M$ contain a subsequence converging in M

- Precompact \Rightarrow bounded
- Precompact \Leftrightarrow bounded (finite dim. only!)

Counterexample?

Compact Operators

X, Y : Banach spaces
Definition 5 (Compact operator) $T: X \rightarrow Y$ is compact : $\Leftrightarrow T$ (bounded set) is precompact.

- T, S compact $\Rightarrow \alpha T+\beta S$ compact
- One of T, S compact $\Rightarrow S \circ T$ compact
- T_{n} all compact, $T_{n} \rightarrow T$ in operator norm $\Rightarrow T$ compact

Questions:

- Let $\operatorname{dim} T(X)<\infty$. Is T compact?
- Is the identity operator compact?

