

Operators

- X, Y: Banach spaces
- $A: X \rightarrow Y$ linear operator

Definition 2 (Operator norm) $||A|| := \sup\{||Ax|| : x \in X, ||x|| = 1\}$

Theorem 1 ||A|| bounded \Leftrightarrow A continuous

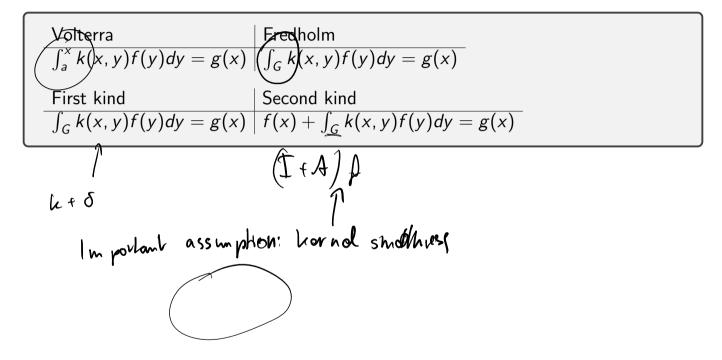
Operators: Examples

Which of these is bounded as an operator on functions on the real line?

- Multiplication by a scalar
- "Left shift"
- Fourier transform
- Differentiation
- Integration
- Integral operators

$$\begin{array}{l} p \mapsto \alpha p \\ A; p(x) \mapsto p(x + \alpha) \\ A(ap+b) = ap(x + \alpha) + bg(x + \lambda) \end{array}$$

Integral Operators: Zoology



Connections to Complex Variables

Complex analysis is *full* of integral operators:

• Cauchy's integral formula:

$$f(a) = \frac{1}{2\pi i} \oint_{\gamma} \frac{1}{z-a} f(z) \, dz$$

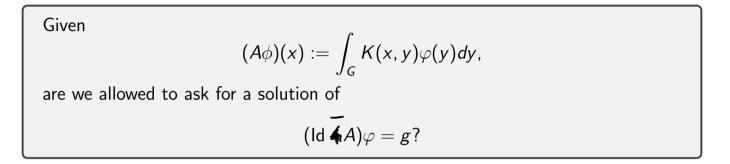
• Cauchy's differentiation formula:

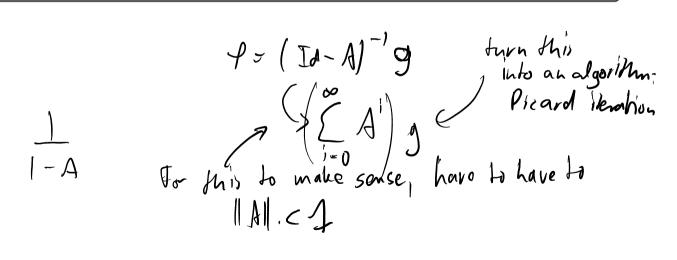
$$f^{(n)}(a) = rac{n!}{2\pi i} \oint_{\gamma} rac{1}{(z-a)^{n+1}} f(z) \, dz$$

Integral Operators: Boundedness (=Continuity)

Theorem 2 (Continuous kernel
$$\Rightarrow$$
 bounded) $G \subset \mathbb{R}^n$ closed, bounded
("compact"), $K \in C(G^2)$. Let
 $(A\phi)(x) := \int_G K(x, y)\phi(y)dy$.
Then
 $||A||_{\infty} = \max_{x \in G} \int_G |K(x, y)|dy$.
Show ' \leq '.
Let
Let
 $f = \|A\|_{\infty} = \int_G k(x, y)|dy$.
 $\int_G k(x, y)\phi(y)dy\|_{\infty} = 4$ on $d \notin C^{\circ}(G)$.
 $||A|e|| = \|\int_G k(x, y)\phi(y)dy\|_{\infty}$
 $\leq \|\int_G k(x, y)\phi(y)dy\|_{\infty}$

Solving Integral Equations





Attempt 1: The Neumann series

Want to solve

$$\varphi - A\varphi = (I - A)\varphi = g.$$

Formally:

$$\varphi = (I - A)^{-1}g.$$

What does that remind you of?

6.2 Compactness

Compact sets

Definition 3 (Precompact/Relatively compact) $M \subseteq X$ precompact: \Leftrightarrow all sequences $(x_k) \subset M$ contain a subsequence converging in X

Definition 4 (Compact/'Sequentially complete') $M \subseteq X$ compact: \Leftrightarrow all sequences $(x_k) \subset M$ contain a subsequence converging in M

- Precompact \Rightarrow bounded
- Precompact ⇔ bounded (finite dim. only!)

Counterexample?

$$\begin{array}{c} c_{0}, & soque \\ (1, 0, 0, ..., -) \\ (c_{1}, 0, 0, 0, -) \\ (o, 0, 1, 0, -, -) \end{array} + and n \rightarrow \infty$$

Compact Operators

X, Y: Banach spaces

Definition 5 (Compact operator) $T : X \to Y$ *is* compact : \Leftrightarrow T(bounded set) *is precompact.*

- *T*, *S* compact $\Rightarrow \alpha T + \beta S$ compact
- One of T, S compact \Rightarrow S \circ T compact
- T_n all compact, $T_n \rightarrow T$ in operator norm $\Rightarrow T$ compact

Questions:

- Let dim $T(X) < \infty$. Is T compact?
- Is the identity operator compact?

Intuition about Compact Operators

- Compact operator: As finite-dimensional as you're going to get in infinite dimensions.
- Not clear yet-but they are moral $(\infty$ -dim) equivalent of a matrix having *low* numerical rank.
- Are compact operators continuous (=bounded)?
- What do they do to high-frequency data?
- What do they do to low-frequency data?

Arzelà-Ascoli

Let $G \subset \mathbb{R}^n$ be compact.

Theorem 3 (Arzelà-Ascoli) $U \subset C(G)$ is precompact iff it is bounded and equicontinuous.

Equicontinuous means For all $x, y \in G$ for all $\epsilon > 0$ there exists a $\delta > 0$ such that for all $f \in U$ if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$. Continuous means: For all $x, y \in G$ for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $|x - y| < \delta$ then $(f(x) - f(y)) < \epsilon$. $\text{if } |x-y| < \delta \text{, then } |f(x) - f(y)| < \epsilon.$

Intuition?

"Uniformly continuous"?

When does *uniform continuity* happen?

6.3 Integral Operators

Integral Operators are Compact

Theorem 4 (Continuous kernel \Rightarrow compact [Kress LIE Thm. 2.21]) $G \subset \mathbb{R}^m$ compact, $K \in C(G^2)$. Then

$$(A\phi)(x) := \int_G K(x,y)\phi(y)dy.$$

is compact on C(G).

Use A-A. (a statement about compact sets)

What is there to show?

Pick $U \subset C(G)$. A(U) bounded?

A(U) equicontinuous?

Weakly singular

 $G \subset \mathbb{R}^n$ compact

Definition 6 (Weakly singular kernel) • K defined, continuous everywhere except at x = y
There exist C > 0, α ∈ (0, n] such that

$$|K(x,y)| \leq C|x-y|^{\alpha-n}$$
 $(x \neq y)$

Theorem 5 (Weakly singular kernel \Rightarrow **compact** [Kress LIE Thm. 2.22]) *K* weakly singular. Then

$$(A\phi)(x) := \int_G K(x,y)\phi(y)dy.$$

is compact on C(G).

Outline the proof.

Weakly singular (on surfaces)

$$\begin{split} \Omega \subset \mathbb{R}^n \text{ bounded, open, } C^1 \\ \hline \mathbf{Definition 7 (Weakly singular kernel (on a surface))} & \bullet K \text{ defined,} \\ \text{ continuous everywhere except at } x = y \\ \bullet \text{ There exist } C > 0, \ \alpha \in (0, n-1] \text{ such that} \\ |K(x,y)| \leq C|x-y|^{\alpha-n+1} \quad (x,y \in \partial\Omega, \ x \neq y) \end{split}$$

Theorem 6 (Weakly singular kernel \Rightarrow compact [Kress LIE Thm. 2.23]) *K* weakly singular on $\partial\Omega$. Then

$$(A\phi)(x) := \int_G K(x, y)\phi(y)dy.$$

is compact on C(G).