**Theorem 5**  $A: X \rightarrow X$  Banach, ||A|| < 1

$$(I-A)^{-1}=\sum_{k=0}^{\infty}A^k$$

with  $||(I - A)^{-1}|| \le 1/(1 - ||A||)$ .

- How does this rely on completeness/Banach-ness?
- There's an iterative procedure hidden in this.
   (Called '*Picard Iteration*'. Cf: Picard-Lindelöf theorem.)
   *Hint:* How would you compute ∑<sub>k</sub> A<sup>k</sup>f?
- **Q:** Why does this fall short?

 $||A|| \leq 1$  is way to restrictive a condition.

 $\rightarrow$  We'll need better technology.

Biggest Q: If Cauchy sequences are too weak a tool to deliver a limit, where else

are we going to get one?



# 6.2 Compactness

## **Compact sets**

**Definition 6 (Precompact/Relatively compact)**  $M \subseteq X$  precompact:  $\Leftrightarrow$  all sequences  $(x_k) \subset M$  contain a subsequence converging in X

**Definition 7 (Compact/'Sequentially complete')**  $M \subseteq X$  compact:  $\Leftrightarrow$  all sequences  $(x_k) \subset M$  contain a subsequence converging in M

- Precompact  $\Rightarrow$  bounded
- Precompact ⇔ bounded (finite dim. only!)

Counterexample?

Looking for a bounded set where not every sequence contains a convergent subsequence.  $\rightarrow$  Make use of the fact that there are infinitely many 'directions' (dimensions).

Precompactness 'replaces' boundedness in  $\infty$  dim (because boundedness is 'not strong enough')

## **Compact Operators**

X, Y: Banach spaces

**Definition 8 (Compact operator)**  $T : X \to Y$  *is* compact : $\Leftrightarrow$  T(bounded set) *is precompact.* 

- *T*, *S* compact  $\Rightarrow \alpha T + \beta S$  compact
- One of T, S compact  $\Rightarrow$  S  $\circ$  T compact
- $T_n$  all compact,  $T_n \rightarrow T$  in operator norm  $\Rightarrow T$  compact

Questions:

- Let dim  $T(X) < \infty$ . Is T compact?
- Is the identity operator compact?

## Intuition about Compact Operators

- Compact operator: As finite-dimensional as you're going to get in infinite dimensions.
- Not clear yet-but they are moral  $(\infty$ -dim) equivalent of a matrix having *low* numerical rank.
- Are compact operators continuous (=bounded)?
- What do they do to high-frequency data?
- What do they do to low-frequency data?

#### Arzelà-Ascoli

Let  $G \subset \mathbb{R}^n$  be compact.

**Theorem 6 (Arzelà-Ascoli)**  $U \subset C(G)$  is precompact iff it is bounded and equicontinuous.

#### Equicontinuous means

For all  $x, y \in G$   $(\neg c, \varphi, U)$ 

for all  $\epsilon > 0$  there exists a  $\delta > 0$  such that for all  $f \in U$ 

if  $|x - y| < \delta$ , then  $|f(x) - f(y)| < \epsilon$ .

#### **Continuous** means:

For all  $x, y \in G$ 

for all  $\epsilon > 0$  there exists a  $\delta > 0$  such that

 $\delta = \delta(\chi, q, f)$  $\mathcal{O} = \mathcal{O} \left( \mathcal{E}, \mathcal{F} \right)$ Sketch of proof . UCC(6) precomposet (=> bdd + equicontinuous 12)1 Since U is precompact  $F(f_i) \in C(G)$   $f_{ini}^{i}de$  $S_{1}$ ,  $\forall A \in V \exists A;$ (+b+al boundedness) let art. let ray 66. for even of pick on di such that d-fil < E Simultaneously | f(x) - f(y) | < | f(x) - f(y) | + (f'(y) - f'(y)) +Fils) - fly1) < 38

6.3 Integral Operators

E see book "diagonal Orjunet"

**Integral Operators are Compact** 

**Theorem 7 (Continuous kernel**  $\Rightarrow$  compact [Kress LIE Thm. 2.21])  $G \subset \mathbb{R}^m$  compact,  $K \in C(G^2)$ . Then

$$(A\phi)(x) := \int_{G} K(x, y)\phi(y)dy.$$
  
: C(G)  $\rightarrow$  C(G)

is compact on C(G).

Let UC((6) be bounded Use A-A. (a statement about compact sets) Show : A(v) is compact What is there to show?

Pick  $U \subset C(G)$ . A(U) bounded?

Yes, because the operator is bounded. 
$$\oint e u$$
  
 $|A\phi(x)| = \int_{6} K(x,y) \phi(y) dy|$ 

$$\frac{2 \left[ \max \mathcal{K} \right] \left[ 6 \right] \left[ \max \mathcal{F} \right]}{bound on \left[ A \right]}$$

Yes, because K uniformly continuous on  $G \times G$  because  $G \times G$  compact.

Let Ero. Let 
$$x_{1}y \in G$$
.  
 $|A\phi(x) - Ad(y)| = |\int_{G} K(x_{1},z)\phi(z)dz - \int_{G} K(y_{1},z)\phi(z)dz|$   
 $= |\int_{G} (K(x_{1},z)-K(y_{1},z))\phi(z)dz|$   
Since  $K$  is uniformly continuous, pick  $dzol$   
indynulus of  $a_{1}b \in G > G$ . If  $|x-y| < \delta$  (in  $\delta$ )  
thun  $|(x_{1}z) - (y_{1}z)| < \delta$  in  $G > G$ .  
 $\leq \epsilon |G| |mox \phi| < \epsilon |G| |U|$ 

#### Weakly singular

 $G \subset \mathbb{R}^n$  compact

Definition 9 (Weakly singular kernel) • K defined, continuous everywhere except at x = y
There exist C > 0, α ∈ (0, n] such that

$$|K(x,y)| \leq C|x-y|^{\alpha-n}$$
  $(x \neq y)$ 

**Theorem 8 (Weakly singular kernel**  $\Rightarrow$  **compact** [Kress LIE Thm. 2.22]) *K* weakly singular. Then

$$(A\phi)(x) := \int_G K(x,y)\phi(y)dy.$$

is compact on C(G).

Outline the proof.

let p= |x-y]. WL06 x=0.  $\int K(x,y) \phi(y) dy$ < S<sub>6</sub> | 1((x,,)) | \$(5) | dy < 100 domain is bounded < 100 pa-n pn-1 dp < 1000 Cwn id ac Kn (x,z) = h(n|x-z 1) K(x,z) 1/2 Continuous Keind 1 Show: as 4-700 An - A' / ~ > 0  $A_n \phi(x) = \int K_n(x_{ij}) d(x) dy$ . We have  $\left[A_{\rm L}\phi(x)-A,\phi(x)\right]$  $\leq \int_{G} \left( K_{n}(Y_{r,j}) - K(Y_{r,j}) \right) \phi(y) \, dy$  $\langle |\phi|_{\infty} \subset \int_{a}^{V_{n}} p^{a-n} p^{n-1} dp$ 

## Weakly singular (on surfaces)

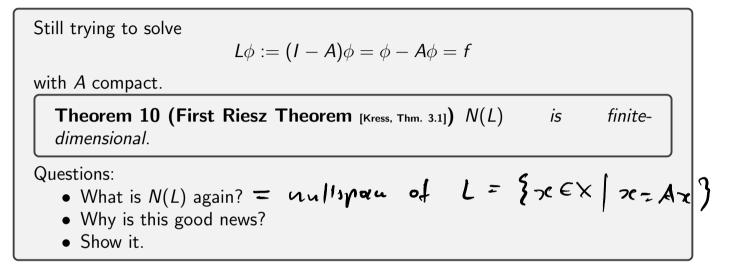
 $\Omega \subset \mathbb{R}^n$  bounded, open,  $C^1$ Definition 10 (Weakly singular kernel (on a surface)) • K defined, continuous everywhere except at x = y• There exist C > 0,  $\alpha \in (0, n-1]$  such that  $|K(x,y)| \leq C|x-y|^{\alpha-n+1}$ ,  $(x,y \in \partial\Omega, x \neq y)$ **Theorem 9 (Weakly singular kernel**  $\Rightarrow$  **compact** [Kress LIE Thm. 2.23]) K weakly singular on  $\partial \Omega$ . Then  $(A\phi)(x) := \int_{\partial A} K(x, y)\phi(y)dy.$ is compact on C(DQ). ((d  $\Omega$ )

**Q:** Has this estimate gotten worse or better?

# 6.4 Riesz and Fredholm

$$(\overline{I}-A)$$
, A compact  
 $\Psi - \int k' \varphi = f$ 

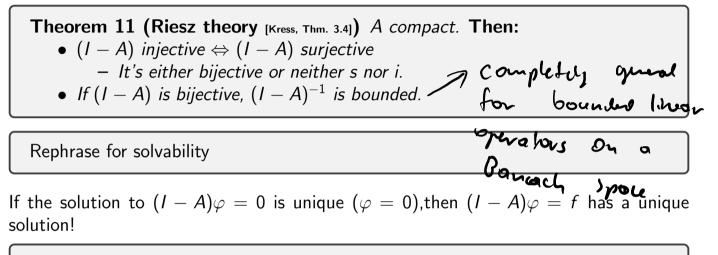
# **Riesz Theory (I)**



Good news because each dimension in N(L) is an obstacle to invertibility. Now we know that there's only 'finitely many obstacles'.

Proof:

**Riesz Theory (Part II)** 



Main impact?

A real solvability result!

Key shortcoming?

Gives out completely if there happens to be a nullspace.

Solvability  

$$(1-A) \text{ injective } (F-A) \text{ surjective}$$

$$((-A) \text{ injective} (F-A) \text{ surjective}$$

$$(1-A) \text{ injective} (F-A) \text{ surjective}$$

$$\forall f = \int x$$

$$(1-A)x = f$$

# $('): X \times X \rightarrow \mathbb{C}$

#### **Hilbert spaces**

Hilbert space: Banach space with a norm coming from an *inner product*:

$$(x, x) = \sqrt{(x, x)}$$

$$(\alpha x + \beta y, z) =? (\alpha y, z) + (\beta y, z)$$

$$(x, \alpha y + \beta z) =? \alpha (\gamma y, z) + \beta (z, z)$$

$$(x, x)? (\gamma y, z) =? \beta (z, z)$$

$$(y, x) =?$$

Is  $C^0(G)$  a Hilbert space?

No, no inner product generates  $\|\cdot\|_{\infty}$ .

Name a Hilbert space of functions.

 $L^2(\Omega)$  with

$$(f,g)=\int_{\Omega}f\cdot g.$$