TODAY

Last himac:

- Green's fomule int/ext
- 'jurp relatións
- BVPuniqueness
(hws graded hwJ $\rightarrow \mathrm{Dec}^{4} 4$
nexh:
- IE unigheness
- Helmhol/r
- Calderón identitiest
- huruntes

$$
u(x)=\int_{\Gamma} \hat{n}_{y^{\prime}} \cdot D_{y} \sigma(x-y) \sigma(y) d y
$$

Boundary Value Problems: Overview

What does $f(x)=O(1)$ mean? (and $f(x)=o(1) ?$)

Dirichlet uniqueness: why?

Neumann uniqueness: why?

Truth in advertising: Missing assumptions on Ω ?

What's a DiN map?

Next mission: Find IE representations for each.

Uniqueness of Integral Equation Solutions

Show $N(I / 2-D)=\{0\}$.
Show $N\left(1 / 2-S^{\prime}\right)=\{0\} . \quad V \quad(F H)$
Show $N(I / 2+D) \cong \operatorname{span}\{1\}$.
What extra conditions on the RHS do we obtain?

$$
(I-A)(x)=N\left(I-A^{*}\right)^{\perp}
$$

\Rightarrow range of int. Newman $\perp_{L_{2}}$ cost.

$$
[5 x]=
$$

Show $N\left(\frac{t}{2}-D\right)=\{0\}$.
Suppose: $\frac{\varphi}{2}-D \varphi=0$. To show: $\varphi=0$
$u(x):=D_{u}(x) . \Delta u(x)=0$ off of \int.

$$
\lim _{x \rightarrow \Gamma^{-}} u^{-}=0 p-1 / 2=0
$$

$4 /$ int $=0$ because of int BVPuniqueness

$$
\begin{aligned}
\left(\partial_{n} u\right)_{-}=0 & =\left(\partial_{n} u\right)_{+} \\
\left.\Rightarrow n\right|_{\text {ext }} & =0 \quad B_{y} \text { jump pond. } \varphi=u_{+}-u_{+}=0
\end{aligned}
$$

\rightarrow "Clean" Existence for 3 out of 4.

Patching up Exterior Dirichlet (skipped)

Problem: $N\left(I / 2+S^{\prime}\right)=\{\psi\}$...but we do not know ψ.
Use a different kernel:

$$
\hat{n} \cdot \nabla_{y} G(x, y) \rightarrow \int\left(\hat{n} \cdot \nabla_{y} G(x, y)+\frac{1}{|x|^{n-2}}\right) \sigma(y) d y
$$

Note: Singularity only at origin! (assumed $\in \Omega) \quad D_{\sigma}(x)+\frac{1}{|x|^{4-2}} \int \sigma(y) d y$

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce $u=0$ on exterior.
- $|x|^{n-2} u(x)=$? on exterior
- Thus $\int \phi=0$. Contribution of the second term?
- $\phi / 2+D \phi=0$, i.e. $\phi \in N(I / 2+D)=$?

$\Delta n:$
(hey. dofinite)

$$
\Delta u-k^{2}
$$

$$
\Delta n+h^{2} n
$$

$$
\begin{aligned}
& \text { "bad" } \\
& { }^{\text {Helmholtz}} \\
& \Delta u=0 \quad \Delta u+k^{2} u=0 \\
& \Delta u-k^{2} u=0 \\
& n=e^{\text {int }} \tilde{u} \\
& \partial_{t}^{2} u=\Delta h \\
& \hat{Y}_{\text {Valuawa }} \\
& \text { Poisoch-Boltom an } \\
& (i v)^{2} \\
& \text { - } \Delta n \text { has nohney eijonvalues }
\end{aligned}
$$

$$
n=0
$$

- Existence/uniqueness?
\rightarrow Existence for 4 out of 4 .
Remaining key shortcoming of IE theory for BVPs?

Domains with Corners

What's the problem? (Hint: Jump condition for constant density)
At corner x_{0} : (2D)

$$
\lim _{x \rightarrow x_{0} \pm}=\int_{\partial \Omega} \hat{n} \cdot \nabla_{y} G(x, y) \phi(y) d s_{y} \pm \frac{1}{2} \frac{\langle\text { opening angle on } \pm \text { side }\rangle}{\pi} \phi
$$

\rightarrow non-continuous behavior of potential on Γ at x_{0}
What space have we been living in?
Fixes:

- I + Bounded (Neumann) + Compact (Fredholm)
- Use L^{2} theory
(point behavior "invisible")
Numerically: Needs consideration, but ultimately easy to fix.
8.2 Helmholtz

Where does Helmholtz come from?

Derive the Helmholtz equation from the wave equation

$$
\partial_{t}^{2} U=c^{2} \triangle U
$$

The prototypical Helmholtz BVP: A Scattering Problem

Ansatz:

$$
u^{\mathrm{tot}}=u+u^{\mathrm{inc}}
$$

Solve for scattered field u.

