$u(x) = \int_{\Gamma} \hat{u}_y \cdot \nabla_y G(x-y) \sigma(y) dy$ Boundary Value Problems: Overview

|      | Dirichlet                                                                                    | Neumann                                                        |                                         |
|------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|
| Int. | $\lim_{x\to\partial\Omega^-} u(x) = g$                                                       | $\lim_{x\to\partial\Omega^-} \hat{n} \cdot \nabla u(x) = g$    | _                                       |
|      | 🗣 unique 🛛 M P                                                                               | • may differ by constant                                       | $\left( R(u_{n}-u_{n}) \right)^{R} = p$ |
| Ext. | $\lim_{x\to\partial\Omega^+} u(x) = g$                                                       | $\lim_{x\to\partial\Omega^+} \hat{n}\cdot\nabla u(x) = g$      |                                         |
|      | $u(x) = \begin{cases} O(1) & 2D \\ o(1) & 3D \end{cases} \text{ as }  x  \to \infty$ Ounique | $u(x) \stackrel{?}{=} o(1) \text{ as }  x  \rightarrow \infty$ | $\nabla G(x) = \frac{x}{x}$             |

X

with  $g \in C(\partial \Omega)$ .

What does f(x) = O(1) mean? (and f(x) = o(1)?)

Dirichlet uniqueness: why?

Neumann uniqueness: why?

Truth in advertising: Missing assumptions on  $\Omega$ ?



# **Uniqueness of Integral Equation Solutions** Int. dir Theorem 17 (Nullspaces [Kress LIE 2nd ed. Thm 6.20]) • N(1/2 - D) = $N(I/2 - S') = \{0\}$ $N(I/2 + D) = \operatorname{span}\{1\}, N(I/2 + S') = \operatorname{span}\{\psi\},$ where $\int \psi \neq 0$ . [ Nonwork FH! dim N(I-A) = dim N(I-A\*) Show $N(1/2 - D) = \{0\}$ . Show $N(1/2 - S') = \{0\}$ .

Show N(I/2 + D) span{1}.

What extra conditions on the RHS do we obtain?

$$(I-A)(x) = N(I-A^*)^{\perp}$$
  
 $\Rightarrow$  range of int. Neumann  $\perp_{l_{a}}$  const.

$$(s_{\tau})=$$

$$show \ N\left(\frac{4}{2}-D\right)=\{0\}.$$

$$Suppose: \frac{4}{2}-0e=0. \quad \text{Fo show: } \varphi=0$$

$$u(x):=0x|x). \quad \Delta u(x)=0 \text{ off of } f.$$

$$lin_{\tau} \quad u^{\tau}=0p-\frac{q}{2}=0$$

$$u_{\tau}=0 \quad because \text{ of inf } DVP uniqueness$$

$$(\partial_{r}u)_{-}=0=(\partial_{r}u)_{+}$$

$$\Rightarrow u[ext=0 \quad Dy jump cond. \quad y=u_{+}-u_{+}=0$$

 $\rightarrow$  "Clean" Existence for 3 out of 4.

#### Patching up Exterior Dirichlet (skipped)

Problem:  $N(I/2 + S') = \{\psi\}$ ...but we do not know  $\psi$ .

Use a different kernel:

$$\begin{array}{ccc}
\hat{n} \cdot \nabla_{y} G(x, y) & \rightarrow & \int \left( \hat{n} \cdot \nabla_{y} G(x, y) + \frac{1}{|x|^{n-2}} \right) \sigma(y) \, dy \\
\text{Note: Singularity only at origin! (assumed  $\in \Omega$ )  $\int \sigma(x) + \frac{1}{|x|^{n-2}} \int \sigma(y) \, dy \\
\bullet & \text{ 2D behavior? 3D behavior?}
\end{array}$$$

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce u = 0 on exterior.
- $|x|^{n-2}u(x) = ?$  on exterior
- Thus  $\int \phi = 0$ . Contribution of the second term?
- $\phi/2 + D\phi = 0$ , i.e.  $\phi \in N(I/2 + D) = ?$







- Existence/uniqueness?
- $\rightarrow$  Existence for 4 out of 4.

Remaining key shortcoming of IE theory for BVPs?

#### **Domains with Corners**



What's the problem? (Hint: Jump condition for constant density) At corner  $x_0$ : (2D)

$$\lim_{x \to x_0 \pm} = \int_{\partial \Omega} \hat{n} \cdot \nabla_y G(x, y) \phi(y) ds_y \pm \frac{1}{2} \frac{\langle \text{opening angle on } \pm \text{ side} \rangle}{\pi} \phi$$

 $\rightarrow$  non-continuous behavior of potential on  $\Gamma$  at  $x_0$ 

What space have we been living in?

Fixes:

• *I* + Bounded (Neumann) + Compact (Fredholm)

• Use  $L^2$  theory

(point behavior "invisible")

Numerically: Needs consideration, but ultimately easy to fix.

## 8.2 Helmholtz

### Where does Helmholtz come from?

Derive the Helmholtz equation from the wave equation

$$\partial_t^2 U = c^2 \triangle U,$$

The prototypical Helmholtz BVP: A Scattering Problem



Ansatz:

$$u^{\text{tot}} = u + u^{\text{inc}}$$

Solve for scattered field *u*.