TODAY:

- Obtw:
- Helmholtz: the badparbs
- Calderón
- numerice

$$
(u, v)=\int u(x) v(x) d x \int_{\Omega} u \Delta_{\hat{\imath}}-v \Delta_{L}=D(n)-\int(n \cdot D 1)
$$

Domains with Corners

$$
v=6
$$

What's the problem? (Hint: Jump condition for constant density) At corner x_{0} : (DD)

$$
\lim _{x \rightarrow x_{0} \pm}=\int_{\partial \Omega} \hat{n} \cdot \nabla_{y} G(x, y) \phi(y) d s_{y} \pm \frac{1}{2} \frac{\langle\text { opening angle on } \pm \text { side }\rangle}{\pi} \phi
$$

\rightarrow non-continuous behavior of potential on Γ at x_{0}
What space have we been living in?
Fixes:

- I + Bounded (Neumann) + Compact (Fredholm)

- Use L^{2} theory
(point behavior "invisible")
Numerically: Needs consideration, but ultimately easy to fix.
8.2 Helmholtz

Where does Helmholtz come from?

Derive the Helmholtz equation from the wave equation

$$
\partial_{t}^{2} U=c^{2} \triangle U
$$

The prototypical Helmholtz BVP: A Scattering Problem

Ansatz:

$$
u^{\mathrm{tot}}=u+u^{\mathrm{inc}}
$$

Solve for scattered field u.

Helmholtz: Some Physics

Physical quantities:

- Velocity potential: $U(x, t)=u(x) e^{-i \omega t}$
(fix phase by e.g. taking real part)
- Velocity: $\boldsymbol{v}=\left(1 / \rho_{0}\right) \nabla U$
- Pressure: $p=-\partial_{t} U=i \omega u e^{-i \omega t}$
- Equation of state: $p=f(\rho)$

What's ρ_{0} ?

What happens to a pressure $B C$ as $\omega \rightarrow 0$?

Helmholtz: Boundary Conditions

- Sound-soft: Pressure remains constant
- Scatterer "gives"
- $u=f \rightarrow$ Dirichlet
- Sound-hard: Pressure same on both sides of interface
- Scatterer "does not give"
- $\hat{n} \cdot \nabla u=0 \rightarrow$ Neumann
- Impedance: Some pressure translates into motion
- Scatterer "resists"
$-\hat{n} \cdot \nabla u+i k \lambda u=0 \rightarrow \operatorname{Robin}(\lambda>0)$
- Sommerfeld radiation condition: allow only outgoing waves

$$
r^{\frac{n-1}{2}}\left(\frac{\partial}{\partial r}-i k\right) u(x) \rightarrow 0 \quad(r \rightarrow \infty)
$$

(where n is the number of space dimensions)

Many interesting BCs \rightarrow many IEs! :)
Transmission between media: What's continuous?

Unchanged from Laplace

Theorem 18 (Green's Formula [Colton/Kress IAEST The 2.1]) If $\triangle u+k^{2} u=0$, then

$$
(S(\hat{n} \cdot \nabla u)-D u)(x)= \begin{cases}u(x) & x \in D \\ \frac{u(x)}{2} & x \in \partial D \\ 0 & x \notin D\end{cases}
$$

$$
\begin{aligned}
& {[S u]=0} \\
& H_{0}^{(1)}(L \cdot v) \\
& \lim _{x \rightarrow x_{0} \pm}\left(S^{\prime} u\right)=\left(S^{\prime} \mp \frac{1}{2} I\right)(u)\left(x_{0}\right) \quad \Rightarrow \quad\left[S^{\prime} u\right]=-u \\
& \lim _{x \rightarrow x_{0} \pm}(D u)=\left(D \pm \frac{1}{2} I\right)(u)\left(x_{0}\right) \quad \Rightarrow \quad[D u]=u \\
& =0
\end{aligned}
$$

Why is singular behavior (esp. jump conditions) unchanged?

Why does Green's formula survive?
Remember Green's theorem:

$$
\int_{\Omega} u \triangle v-v \triangle u=\int_{\partial \Omega} u(\hat{n} \cdot \nabla v)-v(\hat{n} \cdot \nabla u) d s
$$

$$
\Delta n+\dot{k}^{2} n=0
$$

$$
\Delta
$$

Resonances

$-\triangle$ on a bounded (interior) domain with homogeneous Dirichlet/Neumann BCs has countably many real, positive eigenvalues.

What does that have to with Helmholtz?

Why could it cause grief?

Helmholtz: Boundary Value Problems
Find $u \in C(\bar{D})$ with $\triangle u+k^{2}=0$ such that

Combined-field ext Neumann; $\left(\frac{\pi}{2}-S^{1}-D^{1}\right) \sigma=g$

$$
\begin{aligned}
& a(x)=S_{\sigma}-D S_{\sigma} \\
& D^{\prime} S=\left(s^{\prime}\right)^{2}-\frac{I}{4}
\end{aligned}
$$

Patching up resonances

Issue: Ext. IE inherits non-uniqueness from 'adjoint' int. BVP
Fix: Tweak representation [Brakhage/Werner '65, ...]
(also called the 'CFIE'-'combined field integral equation')

$$
u=D \phi-i \alpha S \phi
$$

(α : tuning knob $\rightarrow 1$ is fine, $\sim k$ better for large k)

How does this help?

Uniqueness for remaining lIEs similar. (skipped)
8.3 Calderón identities

Show that D^{\prime} is self adjoint.

Show that $\left(S \varphi, D^{\prime} \psi\right)=\left(\left(S^{\prime}+I / 2\right) \varphi,(D-I / 2) \psi\right)$.

$$
\left(\varphi, S D^{\prime} \psi\right) ?
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\left.D^{1} \varphi, \psi\right)=\left(\varphi, D^{1} \psi\right) \\
u:=D \varphi
\end{array}\right. \\
& \quad S_{\Delta x} u \Delta r-v \Delta u=\int_{\partial \Omega}(r \cdot \nabla u) v-u(n \cdot D v)=0
\end{aligned}
$$

$$
\begin{aligned}
\left(D^{\prime} e, \psi\right) & =\left(D^{\prime} \varphi,[v]\right) \\
& =\left(D^{\prime} \varphi, v^{+}\right)-\left(D^{\prime} \varphi, v^{-}\right) \\
& =\left((D \varphi)^{+}, v^{\prime}\right)-\left((D \varphi)^{-} v^{\prime}\right) \\
& =\left([u), v^{\prime}\right)=\left(\varphi, D^{\prime} \psi\right)
\end{aligned}
$$

$$
S D^{\prime} \psi=\left(D^{2}-\frac{I}{4}\right) \psi
$$

Calderón Identities: Summary

- $S D^{\prime}=D^{2}-1 / 4$
- $D^{\prime} S=S^{\prime 2}-1 / 4$

Also valid for Laplace (jump relation same after all!)

Why do we care?

9 Back from Infinity: Discretization

9.1 Fundamentals: Meshes, Functions, and Approximation

Numerics: What do we need?

- Discretize curves and surfaces
- Interpolation
- Grid management
- Adaptivity
- Discretize densities
- Discretize integral equations
- Nyström, Collocation, Galerkin
- Compute integrals on them
- "Smooth" quadrature
- Singular quadrature
- Solve linear systems

Constructing Discrete Function Spaces

Floating point numbers \rightarrow Functions
(Degrees of Freedom/DoFs)

Discretization relies on three things:

- Base/reference domain
- Basis of functions
- Meaning of DoFs

Related finite element concept: Ciarlet triple

Discretization options for a curve?

What do the DoFs mean?

Common DoF choices:

- Point values of function
- Point values of (directional?) derivatives
- Basis coefficients
- Moments

Often: useful to have both "modes", "nodes", jump back and forth

Why high order?

Order p : Error bounded as

$$
\left|u_{h}-u\right| \leq C h^{p}
$$

Thought experiment:

First order	Fifth order
$1,000 \mathrm{DoFs} \approx 1,000$ triangles	$1,000 \mathrm{DoFs} \approx 66$ triangles
Error: 0.1	Error: 0.1
Error: $0.01 \rightarrow ?$	Error: $0.01 \rightarrow ?$
$\qquad 100,000$ Lriauflur	

Complete the table.

Remarks:

- Want $p \geq 3$ available.
- Assumption: Solution sufficiently smooth

What is an Unstructured Mesh?

Why have an unstructured mesh?

What is the trade-off in going unstructured?

Fixed-order vs Spectral

Fixed-order	Spectral
Number of DoFs n	Number of DoFs n
\sim	Number of modes resolved
Number of 'elements'	Error $\sim \frac{1}{C^{n}}$

What assumptions are buried in each of these?

What should the DoFs be?

Vandermonde Matrices

$$
\left(\begin{array}{cccc}
x_{0}^{0} & x_{0}^{1} & \cdots & x_{0}^{n} \\
x_{1}^{0} & x_{1}^{1} & \cdots & x_{1}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n}^{0} & x_{n}^{1} & \cdots & x_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=?
$$

Generalized Vandermonde Matrices

$$
\left(\begin{array}{cccc}
\phi_{0}\left(x_{0}\right) & \phi_{1}\left(x_{0}\right) & \cdots & \phi_{n}\left(x_{0}\right) \\
\phi_{0}\left(x_{1}\right) & \phi_{1}\left(x_{1}\right) & \cdots & \phi_{n}\left(x_{1}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{0}\left(x_{n}\right) & \phi_{1}\left(x_{n}\right) & \cdots & \phi_{n}\left(x_{n}\right)
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=?
$$

Generalized Vandermonde Matrices

$$
\left(\begin{array}{cccc}
\phi_{0}\left(x_{0}\right) & \phi_{1}\left(x_{0}\right) & \cdots & \phi_{n}\left(x_{0}\right) \\
\phi_{0}\left(x_{1}\right) & \phi_{1}\left(x_{1}\right) & \cdots & \phi_{n}\left(x_{1}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{0}\left(x_{n}\right) & \phi_{1}\left(x_{n}\right) & \cdots & \phi_{n}\left(x_{n}\right)
\end{array}\right) \text { MODAL COEFFS = NODAL COEFFS }
$$

Node placement?

Vandermonde conditioning?

What about multiple dimensions?

Common Operations

(Generalized) Vandermonde matrices simplify common operations:

- Modal \leftrightarrow Nodal ("Global interpolation")
- Filtering
- Up-/Oversampling
- Point interpolation (Hint: solve using V^{T})
- Differentiation
- Indefinite Integration
- Inner product
- Definite integration

