
TODAY:



Domains with Corners
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What’s the problem? (Hint: Jump condition for constant density)

At corner x0: (2D)

lim
x→x0±

=
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∂Ω

n̂ ·∇yG (x , y)φ(y)dsy ±
1

2

�opening angle on ± side�
π

φ

→ non-continuous behavior of potential on Γ at x0

What space have we been living in?

Fixes:

• I + Bounded (Neumann) + Compact (Fredholm)





• Use L2 theory

(point behavior “invisible”)

Numerically: Needs consideration, but ultimately easy to fix.



8.2 Helmholtz



Where does Helmholtz come from?

Derive the Helmholtz equation from the wave equation

∂2
tU = c2�U ,



The prototypical Helmholtz BVP: A Scattering Problem

Ω

Rn \ Ω
Γ

uinc

u

Ansatz:
utot = u + uinc

Solve for scattered field u.



Helmholtz: Some Physics

Physical quantities:

• Velocity potential: U(x , t) = u(x)e−iωt

(fix phase by e.g. taking real part)

• Velocity: v = (1/ρ0)∇U

• Pressure: p = −∂tU = iωue−iωt

– Equation of state: p = f (ρ)

What’s ρ0?

What happens to a pressure BC as ω → 0?



Helmholtz: Boundary Conditions

• Sound-soft: Pressure remains constant

– Scatterer “gives”

– u = f → Dirichlet

• Sound-hard: Pressure same on both sides of interface

– Scatterer “does not give”

– n̂ ·∇u = 0 → Neumann

• Impedance: Some pressure translates into motion

– Scatterer “resists”

– n̂ ·∇u + ikλu = 0 → Robin (λ > 0)

• Sommerfeld radiation condition: allow only outgoing waves

r
n−1
2

�
∂

∂r
− ik

�
u(x) → 0 (r → ∞)

(where n is the number of space dimensions)



Many interesting BCs → many IEs! :)

Transmission between media: What’s continuous?



Unchanged from Laplace

Theorem 18 (Green’s Formula [Colton/Kress IAEST Thm 2.1]) If �u + k2u = 0, then

(S(n̂ ·∇u)− Du)(x) =





u(x) x ∈ D
u(x)
2 x ∈ ∂D

0 x �∈ D

[Su] = 0

lim
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(S �u) =
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(u)(x0) ⇒ [S �u] = −u
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x→x0±
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2
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�
(u)(x0) ⇒ [Du] = u

= 0

Why is singular behavior (esp. jump conditions) unchanged?



Why does Green’s formula survive?
Remember Green’s theorem:

�

Ω

u�v − v�u =

�

∂Ω

u(n̂ ·∇v)− v(n̂ ·∇u)ds



Resonances

−� on a bounded (interior) domain with homogeneous Dirichlet/Neumann BCs has
countably many real, positive eigenvalues.

What does that have to with Helmholtz?

Why could it cause grief?



Helmholtz: Boundary Value Problems

Find u ∈ C (D̄) with �u + k2 = 0 such that

Dirichlet Neumann
Int. limx→∂D− u(x) = g

unique (−resonances)
limx→∂D− n̂ ·∇u(x) = g
unique (−resonances)

Ext. limx→∂D+ u(x) = g
Sommerfeld
unique

limx→∂D+ n̂ ·∇u(x) = g
Sommerfeld
unique

with g ∈ C (∂D).

Find layer potential representations for each.



Patching up resonances

Issue: Ext. IE inherits non-uniqueness from ‘adjoint’ int. BVP

Fix: Tweak representation [Brakhage/Werner ‘65, ...]

(also called the ‘CFIE ’–‘combined field integral equation’)

u = Dφ− iαSφ

(α: tuning knob → 1 is fine, ∼ k better for large k)

How does this help?

Uniqueness for remaining IEs similar. (skipped)



8.3 Calderón identities

Show that D � is self adjoint.

Show that (Sϕ,D �ψ) = ((S � + I/2)ϕ, (D − I/2)ψ).

(ϕ, SD �ψ)?





Calderón Identities: Summary

• SD � = D2 − I/4
• D �S = S �2 − I/4

Also valid for Laplace (jump relation same after all!)

Why do we care?



9 Back from Infinity: Discretization

9.1 Fundamentals: Meshes, Functions, and Approximation



Numerics: What do we need?

• Discretize curves and surfaces

– Interpolation

– Grid management

– Adaptivity

• Discretize densities

• Discretize integral equations

– Nyström, Collocation, Galerkin

• Compute integrals on them

– “Smooth” quadrature

– Singular quadrature

• Solve linear systems



Constructing Discrete Function Spaces

Floating point numbers
(Degrees of Freedom/DoFs)

→ Functions

←

Discretization relies on three things:

• Base/reference domain

• Basis of functions

• Meaning of DoFs

Related finite element concept: Ciarlet triple

Discretization options for a curve?



What do the DoFs mean?

Common DoF choices:

• Point values of function

• Point values of (directional?) derivatives

• Basis coefficients

• Moments

Often: useful to have both “modes”, “nodes”, jump back and forth



Why high order?

Order p: Error bounded as
|uh − u| ≤ Chp

Thought experiment:

First order Fifth order
1,000 DoFs ≈ 1,000 triangles
Error: 0.1

1,000 DoFs ≈ 66 triangles
Error: 0.1

Error: 0.01 → ? Error: 0.01 → ?

Complete the table.

Remarks:

• Want p ≥ 3 available.

• Assumption: Solution sufficiently smooth

• Ideally: p chosen by user



What is an Unstructured Mesh?

Why have an unstructured mesh?

What is the trade-off in going unstructured?



Fixed-order vs Spectral

Fixed-order Spectral
Number of DoFs n
∼
Number of ‘elements’

Error ∼ 1

np

Examples?
• Piecewise Polynomials

Number of DoFs n
∼
Number of modes resolved

Error ∼ 1

C n

Examples?
• Global Fourier
• Global Orth. Polyno-
mials

What assumptions are buried in each of these?

What should the DoFs be?



What’s the difficulty with purely modal discretizations?



Vandermonde Matrices




x00 x10 · · · xn0
x01 x11 · · · xn1
...

... . . . ...
x0n x1n · · · xnn







a0
a1
...
an


 = ?



Generalized Vandermonde Matrices




φ0(x0) φ1(x0) · · · φn(x0)
φ0(x1) φ1(x1) · · · φn(x1)

...
... . . . ...

φ0(xn) φ1(xn) · · · φn(xn)







a0
a1
...
an


 = ?



Generalized Vandermonde Matrices




φ0(x0) φ1(x0) · · · φn(x0)
φ0(x1) φ1(x1) · · · φn(x1)

...
... . . . ...

φ0(xn) φ1(xn) · · · φn(xn)


MODALCOEFFS = NODALCOEFFS

Node placement?

Vandermonde conditioning?

What about multiple dimensions?



Common Operations

(Generalized) Vandermonde matrices simplify common operations:

• Modal ↔ Nodal (“Global interpolation”)

– Filtering

– Up-/Oversampling

• Point interpolation (Hint: solve using V T )

• Differentiation

• Indefinite Integration

• Inner product

• Definite integration


