

What's the problem? (Hint: Jump condition for constant density) At corner x_0 : (2D)

$$\lim_{x \to x_0 \pm} = \int_{\partial \Omega} \hat{n} \cdot \nabla_y G(x, y) \phi(y) ds_y \pm \frac{1}{2} \frac{\langle \text{opening angle on } \pm \text{ side} \rangle}{\pi} \phi$$

 \rightarrow non-continuous behavior of potential on Γ at x_0

What space have we been living in?

Fixes:

• *I* + Bounded (Neumann) + Compact (Fredholm)

• Use L^2 theory

(point behavior "invisible")

Numerically: Needs consideration, but ultimately easy to fix.

8.2 Helmholtz

Where does Helmholtz come from?

Derive the Helmholtz equation from the wave equation

$$\partial_t^2 U = c^2 \triangle U,$$

The prototypical Helmholtz BVP: A Scattering Problem

Ansatz:

$$u^{\text{tot}} = u + u^{\text{inc}}$$

Solve for scattered field u.

Helmholtz: Some Physics

Physical quantities:

• Velocity potential: $U(x, t) = u(x)e^{-i\omega t}$

(fix phase by e.g. taking real part)

- Velocity: $\mathbf{v} = (1/
 ho_0) \nabla U$
- Pressure: $p = -\partial_t U = i\omega u e^{-i\omega t}$
 - Equation of state: $p = f(\rho)$

What's ρ_0 ?

What happens to a pressure BC as $\omega \rightarrow 0$?

Helmholtz: Boundary Conditions

- Sound-soft: Pressure remains constant
 - Scatterer "gives"
 - $u = f \rightarrow \text{Dirichlet}$
- Sound-hard: Pressure same on both sides of interface
 - Scatterer "does not give"
 - $-\hat{n}\cdot
 abla u = 0
 ightarrow Neumann$
- Impedance: Some pressure translates into motion
 - Scatterer "resists"
 - $\hat{n} \cdot \nabla u + ik\lambda u = 0 \rightarrow \text{Robin} (\lambda > 0)$
- Sommerfeld radiation condition: allow only outgoing waves

$$r^{\frac{n-1}{2}}\left(\frac{\partial}{\partial r}-ik\right)u(x)\to 0$$
 $(r\to\infty)$

(where *n* is the number of space dimensions)

Many interesting $BCs \rightarrow many |Es|$:)

Transmission between media: What's continuous?

Unchanged from Laplace

Theorem 18 (Green's Formula [Colton/Kress IAEST Thm 2.1]) If $\triangle u + k^2 u = 0$, then $(S(\hat{n} \cdot \nabla u) - Du)(x) = \begin{cases} u(x) & x \in D \\ \frac{u(x)}{2} & x \in \partial D \\ 0 & x \notin D \end{cases}$ $\begin{bmatrix} Su \end{bmatrix} = 0$ $H_o^{(A)}(L \cdot r)$

$$\lim_{x \to x_0 \pm} (S'u) = \left(S' \mp \frac{1}{2}I\right)(u)(x_0) \qquad \Rightarrow \qquad [S'u] = -u$$
$$\lim_{x \to x_0 \pm} (Du) = \left(D \pm \frac{1}{2}I\right)(u)(x_0) \qquad \Rightarrow \qquad [Du] = u$$
$$= 0$$

Why is singular behavior (esp. jump conditions) unchanged? e^{ikr}

Why does Green's formula survive? Remember Green's theorem:

$$\int_{\Omega} u \triangle v - v \triangle u = \int_{\partial \Omega} u(\hat{n} \cdot \nabla v) - v(\hat{n} \cdot \nabla u) ds$$

Resonances

 $-\triangle$ on a bounded (interior) domain with homogeneous Dirichlet/Neumann BCs has countably many real, positive eigenvalues.

What does that have to with Helmholtz?

Why could it cause grief?

Helmholtz: Boundary Value Problems

Find
$$u \in C(\bar{D})$$
 with $riangle u + k^2 = 0$ such that

Patching up resonances

Issue: Ext. IE inherits non-uniqueness from 'adjoint' int. BVP

Fix: Tweak representation [Brakhage/Werner '65, ...]

(also called the 'CFIE'-'combined field integral equation')

 $u = D\phi - i\alpha S\phi$

4(x)= So - 1 D So

 $D'S = (S')^2 - \frac{1}{4}$

(α : tuning knob \rightarrow 1 is fine, $\sim k$ better for large k)

How does this help?

Uniqueness for remaining IEs similar. (skipped)

8.3 Calderón identities

Show that D' is self adjoint.

Show that $(S\varphi, D'\psi) = ((S' + I/2)\varphi, (D - I/2)\psi).$

 $(\varphi, SD'\psi)?$

$$\begin{pmatrix} p^{1}\varphi, \psi \end{pmatrix} = (\psi, D^{1}\psi) \\ u := D \varphi \quad \forall := D n \psi \\ S h \Delta v - v \Delta \psi = S h \cdot \nabla n v - u (n \cdot \nabla v) = \partial \\ \Delta u = S h \cdot \nabla n v - u (n \cdot \nabla v) = \partial$$

$$(o' e_{1} \downarrow) = (O' \downarrow, (\lor))$$

$$= (O' \downarrow, \lor^{+}) - (O' \downarrow, \lor^{-})$$

$$= ((O \downarrow)^{+}, \lor') - ((O \lor)^{-}, \lor')$$

$$= (()^{+}, \lor') = (()^{+}, \lor')$$

$$= (()^{+}, \lor') = (()^{+}, \lor')$$

$$SO^{+} \downarrow = (()^{2} - \frac{\pm}{4}) \downarrow$$

Calderón Identities: Summary

- SD' = D² − I/4
 D'S = S'² − I/4

Also valid for Laplace (jump relation same after all!)

Why do we care?

- 9 Back from Infinity: Discretization
- 9.1 Fundamentals: Meshes, Functions, and Approximation

Numerics: What do we need?

- Discretize curves and surfaces
 - Interpolation
 - Grid management
 - Adaptivity
- Discretize densities
- Discretize integral equations
 - Nyström, Collocation, Galerkin
- Compute integrals on them
 - "Smooth" quadrature
 - Singular quadrature
- Solve linear systems

 $(A_{N}, \varphi) = (\varphi, \varphi)$

Constructing Discrete Function Spaces

Discretization options for a curve?

What do the DoFs mean?

Common DoF choices:

- Point values of function
- Point values of (directional?) derivatives
- Basis coefficients
- Moments

Often: useful to have both "modes", "nodes", jump back and forth

Why high order?

What is an Unstructured Mesh?

Why have an unstructured mesh?

What is the trade-off in going unstructured?

Fixed-order vs Spectral

Fixed-order	Spectral
Number of DoFs <i>n</i>	Number of DoFs <i>n</i>
\sim	\sim
Number of 'elements'	Number of modes resolved
$Error \sim \frac{1}{n^{\rho}}$	$Error \sim \frac{1}{C^n}$
Examples? • Piecewise Polynomials	Examples? • Global Fourier • Global Orth. Polyno- mials

What assumptions are buried in each of these?

What should the DoFs be?

What's the difficulty with purely modal discretizations?

Vandermonde Matrices

$$\begin{pmatrix} x_0^0 & x_0^1 & \cdots & x_0^n \\ x_1^0 & x_1^1 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ x_n^0 & x_n^1 & \cdots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = ?$$

Generalized Vandermonde Matrices

$$\begin{pmatrix} \phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_n(x_1) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(x_n) & \phi_1(x_n) & \cdots & \phi_n(x_n) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = ?$$

Generalized Vandermonde Matrices

$$\begin{pmatrix} \phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_n(x_1) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(x_n) & \phi_1(x_n) & \cdots & \phi_n(x_n) \end{pmatrix} \text{MODAL COEFFS} = \text{NODAL COEFFS}$$

Node placement?

Vandermonde conditioning?

What about multiple dimensions?

Common Operations

(Generalized) Vandermonde matrices simplify common operations:

- Modal \leftrightarrow Nodal ("Global interpolation")
 - Filtering
 - Up-/Oversampling
- Point interpolation (Hint: solve using V^T)
- Differentiation
- Indefinite Integration
- Inner product
- Definite integration