TODAY:

- Obt Wi

- Helmholtz: The bad paper

- Calderón

- numeric
What's the problem? \(\text{(Hint: Jump condition for constant density)} \)

At corner \(x_0 \): (2D)

\[
\lim_{x \to x_0} = \int_{\partial \Omega} \hat{n} \cdot \nabla_y G(x, y) \phi(y) ds_y \pm \frac{1}{2} \left(\text{opening angle on } \pm \text{ side} \right) \frac{\phi}{\pi}
\]

\(\rightarrow \) non-continuous behavior of potential on \(\Gamma \) at \(x_0 \)

What space have we been living in?

Fixes:

- \(I + \text{Bounded (Neumann)} + \text{Compact (Fredholm)} \)
• Use L^2 theory

 (point behavior “invisible”)

Numerically: Needs consideration, but ultimately easy to fix.
8.2 Helmholtz
Where does Helmholtz come from?

Derive the Helmholtz equation from the wave equation

$$\partial_t^2 U = c^2 \triangle U,$$
The prototypical Helmholtz BVP: A Scattering Problem

Ansatz:

$$u^{\text{tot}} = u + u^{\text{inc}}$$

Solve for scattered field u.
Helmholtz: Some Physics

Physical quantities:

- Velocity potential: $U(x, t) = u(x)e^{-i\omega t}$
 (fix phase by e.g. taking real part)
- Velocity: $v = (1/\rho_0)\nabla U$
- Pressure: $p = -\partial_t U = i\omega u e^{-i\omega t}$
 - Equation of state: $p = f(\rho)$

What's ρ_0?

What happens to a pressure BC as $\omega \to 0$?
Helmholtz: Boundary Conditions

- **Sound-soft**: Pressure remains constant
 - Scatterer “gives”
 - \(u = f \rightarrow \text{Dirichlet} \)

- **Sound-hard**: Pressure same on both sides of interface
 - Scatterer “does not give”
 - \(\hat{n} \cdot \nabla u = 0 \rightarrow \text{Neumann} \)

- **Impedance**: Some pressure translates into motion
 - Scatterer “resists”
 - \(\hat{n} \cdot \nabla u + ik \lambda u = 0 \rightarrow \text{Robin} \ (\lambda > 0) \)

- **Sommerfeld** radiation condition: allow only outgoing waves
 \[
 r^{\frac{n-1}{2}} \left(\frac{\partial}{\partial r} - ik \right) u(x) \rightarrow 0 \quad (r \rightarrow \infty)
 \]
 (where \(n \) is the number of space dimensions)
Many interesting BCs → many IEs! :)

Transmission between media: What’s continuous?
Unchanged from Laplace

Theorem 18 (Green’s Formula [Colton/Kress IAEST Thm 2.1]) If \(\Delta u + k^2 u = 0 \), then

\[
(S(\hat{n} \cdot \nabla u) - Du)(x) = \begin{cases}
 u(x) & x \in D \\
 \frac{u(x)}{2} & x \in \partial D \\
 0 & x \notin D
\end{cases}
\]

\[
\lim_{x \to x_0 \pm} (S'u) = \left(S' \mp \frac{1}{2}I \right)(u)(x_0) \quad \Rightarrow \quad [S'u] = -u
\]

\[
\lim_{x \to x_0 \pm} (Du) = \left(D \pm \frac{1}{2}I \right)(u)(x_0) \quad \Rightarrow \quad [Du] = u = 0
\]

Why is singular behavior (esp. jump conditions) unchanged?

\[
e^{i\kappa r} - \frac{1}{r} = \frac{1}{r} + \frac{e^{i\kappa r} - 1}{r}
\]
Why does Green’s formula survive?
Remember Green’s theorem:
\[
\int_{\Omega} u \Delta v - v \Delta u = \int_{\partial \Omega} u(\hat{n} \cdot \nabla v) - v(\hat{n} \cdot \nabla u) \, ds
\]
Resonances

$-\Delta$ on a bounded (interior) domain with homogeneous Dirichlet/Neumann BCs has countably many real, positive eigenvalues.

What does that have to with Helmholtz?

Why could it cause grief?
Helmholtz: Boundary Value Problems

Find $u \in C(\bar{D})$ with $\triangle u + k^2 = 0$ such that

<table>
<thead>
<tr>
<th>Dirichlet</th>
<th>Neumann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.</td>
<td>Neumann</td>
</tr>
<tr>
<td>[\lim_{x \to \partial D^-} u(x) = g] unique (−resonances)</td>
<td>[\lim_{x \to \partial D^-} \hat{n} \cdot \nabla u(x) = g] unique (−resonances)</td>
</tr>
<tr>
<td>Ext.</td>
<td>Neumann</td>
</tr>
<tr>
<td>[\lim_{x \to \partial D^+} u(x) = g] Sommerfeld unique</td>
<td>[\lim_{x \to \partial D^+} \hat{n} \cdot \nabla u(x) = g] Sommerfeld unique</td>
</tr>
</tbody>
</table>

with $g \in C(\partial D)$.

Find layer potential representations for each.

\[
\eta(x) = S\sigma - i\mathcal{O}(\sigma)
\]

"CFIE"

Combined-field ext Neumann: \[
(\frac{1}{2} - S' - \mathcal{O}')(\sigma) = g
\]
Patching up resonances

Issue: Ext. IE inherits non-uniqueness from ‘adjoint’ int. BVP

Fix: Tweak representation [Brakhage/Werner ’65, ...]

(also called the ‘CFIE’–‘combined field integral equation’)

\[u = D\phi - i\alpha S\phi \]

(\(\alpha\): tuning knob \(\rightarrow 1\) is fine, \(\sim k\) better for large \(k\))

How does this help?

Uniqueness for remaining IEs similar. (skipped)
8.3 Calderón identities

Show that D' is self adjoint.

Show that $(S\varphi, D'\psi) = ((S' + 1/2)\varphi, (D - 1/2)\psi)$.

$(\varphi, SD'\psi)$?

\[
\begin{align*}
(D'\varphi, \psi) &= (\varphi, D'\psi) \\
\text{with } u &= D\varphi \quad \text{and } v = D\psi \\
\Delta u &= \text{div}(\nu \Delta \eta) = 0 \quad \text{on } \partial \Omega \quad \text{and} \\
\text{div}(\nu \Delta \eta) &= 0.
\end{align*}
\]
\[S \theta_{1/2} = (\hat{0} + \theta(z), C_\theta) = (0, 0) \]

\[(\theta_0, \theta_1) = (\chi, \chi) \]

\[(\theta_0 + \theta_1, \theta_0 - \theta_1) = (0, 0) \]
Calderón Identities: Summary

- $SD' = D^2 - 1/4$
- $D'S = S^2 - 1/4$

Also valid for Laplace (jump relation same after all!)

Why do we care?
9 Back from Infinity: Discretization

9.1 Fundamentals: Meshes, Functions, and Approximation
Numerics: What do we need?

- Discretize curves and surfaces
 - Interpolation
 - Grid management
 - Adaptivity
- Discretize densities
- Discretize integral equations
 - Nyström, Collocation, Galerkin
- Compute integrals on them
 - “Smooth” quadrature
 - Singular quadrature
- Solve linear systems
Constructing Discrete Function Spaces

Floating point numbers \(\rightarrow \) Functions

(Degrees of Freedom/DoFs)

Discretization relies on three things:

- Base/reference domain
- Basis of functions
- Meaning of DoFs

Related finite element concept: Ciarlet triple

Discretization options for a curve?
What do the DoFs mean?

Common DoF choices:

- Point values of function
- Point values of (directional?) derivatives
- Basis coefficients
- Moments

Often: useful to have both “modes”, “nodes”, jump back and forth
Why high order?

Order p: Error bounded as

$$|u_h - u| \leq C h^p$$

Thought experiment:

<table>
<thead>
<tr>
<th>Order</th>
<th>1,000 DoFs</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>First order</td>
<td>$\approx 1,000$ triangles</td>
<td>0.1</td>
</tr>
<tr>
<td>Fifth order</td>
<td>≈ 66 triangles</td>
<td>0.1</td>
</tr>
<tr>
<td>Error: 0.01</td>
<td>$\rightarrow ?$</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

- Want $p \geq 3$ available.
- **Assumption:** Solution sufficiently smooth.
- Ideally: p chosen by user
What is an Unstructured Mesh?

Why have an unstructured mesh?

What is the trade-off in going unstructured?
Fixed-order vs Spectral

<table>
<thead>
<tr>
<th>Fixed-order</th>
<th>Spectral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of DoFs n</td>
<td>Number of DoFs n</td>
</tr>
<tr>
<td>\sim</td>
<td>\sim</td>
</tr>
<tr>
<td>Number of ‘elements’</td>
<td>Number of modes resolved</td>
</tr>
<tr>
<td>Error $\sim \frac{1}{n^p}$</td>
<td>Error $\sim \frac{1}{C^n}$</td>
</tr>
</tbody>
</table>

Examples?
- Piecewise Polynomials
- Global Fourier
- Global Orth. Polynomials

What assumptions are buried in each of these?

What should the DoFs be?
What’s the difficulty with purely modal discretizations?
Vandermonde Matrices

\[
\begin{pmatrix}
 x_0^0 & x_0^1 & \cdots & x_0^n \\
 x_1^0 & x_1^1 & \cdots & x_1^n \\
 \vdots & \vdots & \ddots & \vdots \\
 x_n^0 & x_n^1 & \cdots & x_n^n \\
\end{pmatrix}
\begin{pmatrix}
 a_0 \\
 a_1 \\
 \vdots \\
 a_n \\
\end{pmatrix}
= ?
\]
Generalized Vandermonde Matrices

\[
\begin{pmatrix}
\phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_n(x_0) \\
\phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_n(x_1) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_0(x_n) & \phi_1(x_n) & \cdots & \phi_n(x_n)
\end{pmatrix}
\begin{pmatrix}
a_0 \\
a_1 \\
\vdots \\
a_n
\end{pmatrix}
= ?
\]
Generalized Vandermonde Matrices

\[
\begin{pmatrix}
\phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_n(x_0) \\
\phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_n(x_1) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_0(x_n) & \phi_1(x_n) & \cdots & \phi_n(x_n)
\end{pmatrix}
\]

MODAL COEFFS = NODAL COEFFS

Node placement?

Vandermonde conditioning?

What about multiple dimensions?
Common Operations

(Generalized) Vandermonde matrices simplify common operations:

- Modal ↔ Nodal ("Global interpolation")
 - Filtering
 - Up-/Oversampling
- Point interpolation (Hint: solve using V^T)
- Differentiation
- Indefinite Integration
- Inner product
- Definite integration