Today

- Taylor: local, multipole, low rank
- Linear algebra
3 Rank and Smoothness
What do (numerical) rank and smoothness have to do with each other?
Recap: Multivariate Taylor

How does Taylor’s theorem get generalized to multiple dimensions?

\[f(x) = G(x, y) \]

\[G(x + h, y) = f(x + h) \approx \sum_{|\nu| \leq \kappa} \frac{D^\nu f(x)}{\nu!} h^\nu \]

\[D^{(0, 0)} G(x, y) = \]

\[D^{(1, 0)} G(x, y) = \partial_x G(x, y) \]

\[\left| \frac{D^\nu G(x, y)}{\nu!} \right| \leq C \frac{1}{r^{1+\nu}} \left(|\nu|! \right)^{1/2} \]

\[r = |x - y| \]
\[\sum_{|\nu| \leq k} \frac{D^\nu G(x, y)}{\nu!} \quad \text{Taylor remainder} \]

\[\leq \sum_{p=k+1}^{\infty} \alpha^p \in (\alpha^{k+1}) \]

\[\leq \sum_{p=k+1}^{\infty} \alpha^p \in (\alpha^{k+1}) \]

\[\leq \sum_{p=k+1}^{\infty} \alpha^p \in (\alpha^{k+1}) \]

\[\leq C \left(\frac{1}{\alpha} \right) \]

\[\leq 2^r \]

\[\leq \sum_{|\nu| \leq k} \frac{D^\nu G(x, y)}{\nu!} \quad \text{for all } \nu \]
\[\leq C \left(\frac{\rho}{|v|} \right)^{|v|} \leq C' \left(\frac{\rho}{|v|} \right)^{|v|} \]

Computational tool:
- direct env. \(N_s N_t \)
- from Taylor \(k N_s \)
- eval Taylor \(k N_t \)

\[\text{Error} \leq C \cdot \left(\frac{d(c, \text{farthest tgt})}{d(c, \text{closest src})} \right)^{k+1} \]
How many terms in the Taylor series?

\[|v_1| + |v_2| \leq h \]

\[\text{Rank: } \sim h^2 \]
Estimating the rank:

\[e = \left(\frac{\text{dist}(c, \text{farthest hyd})}{\text{dist}(c, \text{closest src})} \right)^{\text{let} + 1} \]

\[\text{rank} \propto k^2 \implies \sqrt{\text{rank}} = k \]

\[e = \sqrt{\text{rank} + 1} \]

\[k = \sqrt{\left(\frac{\log c}{\log s} - 1 \right)^2} \]
Taylor and Error

How can we estimate the error in a Taylor expansion?
Connect Taylor and Low Rank

| Can Taylor help us establish low rank of an interaction? |
Compute a Taylor expansion of a 2D Laplace point potential.
Local expansions as a Computational Tool

Low rank makes evaluating interactions cheap(er). Do local expansions help with that goal?
Taylor on Potentials, Again

Stare at that Taylor formula again.