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“CPU-style” Cores
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Slimming down

ALU Remove components that

(Execute) . . q
help a single instruction
stream run fast
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More Space: Double the Number of Cores
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Even more
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SIMD

ALV

(Execute)

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs
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SIMD
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Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
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SIMD
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Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs



SIMD
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Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs
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Latency Hiding

» Latency (mem, pipe) hurts
non-O00 cores

» Do something while waiting

What is the unit in which work
gets scheduled on a GPU?

\edor
Nv{d\u‘. \NCIH‘) / M\“‘\(m\/

How can we keep busy?
- MY
- Le

Change in architectural picture?

Before:

After:
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GPUs: Core Architecture Ideas

Three core ideas:
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SIMT

Axis 0
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Wrangling the Grid
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Axis 1 ¢——
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» get_local_id(axis)?/size(axis)?

» get_group_id(axis)?/num_groups(axis)?

> get_global_id(axis)?/size(axis)?
axis=0,1,2,...




Demo CL code

Demo: machabstr/Hello GPU




‘SIMT" and Branches

. D@oOo000®

(clocks) ALU1 ALU2 ... ... ALUS

[Fatahalian ‘08]

<unconditional
shader code>

if (x > 0) {

X = 0;
refl = Ka;

s

<resume unconditional
shader code>




GPU Abstraction: Core Model Ideas

How do these aspects show up in the model?

» View concrete counts as an implementation detail

» SIMD lane
» Core
» Scheduling slot

» Program as if there are infinitely many of them

» Hardware division is expensive
Make nD grids part of the model to avoid it

» Design the model to expose extremely fine-grain concurrency
(e.g. between loop iterations!)

» Draw from the same pool of concurrency to hide latency



GPU Program 'Scopes’

Hardware CL adjective OpenCL CUDA

SIMD lane private Work Item  Thread
SIMD Vector — Subgroup ~ Warp

Core local Workgroup Thread Block
Processor global NDRange Grid



GPU: Communication

What forms of communication exist at each scope?
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Can we just do locking like we might do on a CPU?
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GPU Programming Model: Commentary

» “Vector” / “Warp” / “Wavefront”

» Important hardware granularity
» Poorly/very implicitly represented

» What is the impact of reconvergence?



