ﬁuhow te(no/v&i

;
- pro;\ch fMLM"SJ.o« ,Qogit]fft&

= 6PU- focused HWT : fonigh] / fondrvow

“CPU-style” Cores

AN

ALU

(Execute)

==

/

(A big one)

z

[Fatahalian ‘08]

Slimming down

ALU Remove components that

(Execute) . . q
help a single instruction
stream run fast

[Fatahalian ‘08]

More Space: Double the Number of Cores

[Fatahalian ‘08]

Even more

£l
i

I
Il

EN

[0

£l

I

EN

IO

[Fatahalian ‘08]

SIMD

ALV

(Execute)

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

=

[Fatahalian ‘08]

SIMD

ALV

(Execute)

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

=

[Fatahalian ‘08]

SIMD

ALU1

ALU 2

ALU3

ALU 4

ALU5

ALU 6

ALU7

ALU 8

=

[Fatahalian ‘08]

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

SIMD

ALU1

ALU 2

ALU3

ALU 4

ALU5

ALU 6

ALU7

ALU 8

EEEE

50 B B
_ shared CtxData <

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

EEPITATR ‘nl\

[Fatahalian ‘08]

Latency Hiding

» Latency (mem, pipe) hurts
non-O00 cores

» Do something while waiting

What is the unit in which work
gets scheduled on a GPU?

\edor
Nv{d\u‘. \NCIH‘) / M\“‘\(m\/

How can we keep busy?
- MY
- Le

Change in architectural picture?

Before:

After:

';mlff Shle

GPUs: Core Architecture Ideas

Three core ideas:

— Sheplo [mnmny oF Loty

-~ 5l
== {Xm\, bidvy Herdegh Coutuntmgy
v [| 7 v

(ot Mg

vechwr T T3 o
Qe s
;M\)(

(cre ity oo Susin)

= e % 1/.]/

I

=
|

vac // I}

SIMT

Axis 0

AN BEED
NEE BEE B
HEE AR B

————— T siXy

Wrangling the Grid

L‘x((/r{x«?‘ﬂq’
WVMQ

Axis 0 l/;x

00 Y

N 1|

Axis 1 ¢——

. dureadlchs. xye

» get_local_id(axis)?/size(axis)?

» get_group_id(axis)?/num_groups(axis)?

> get_global_id(axis)?/size(axis)?
axis=0,1,2,...

Demo CL code

Demo: machabstr/Hello GPU

‘SIMT" and Branches

. D@oOo000®

(clocks) ALU1 ALU2 ALUS

[Fatahalian ‘08]

<unconditional
shader code>

if (x > 0) {

X = 0;
refl = Ka;

s

<resume unconditional
shader code>

GPU Abstraction: Core Model Ideas

How do these aspects show up in the model?

» View concrete counts as an implementation detail

» SIMD lane
» Core
» Scheduling slot

» Program as if there are infinitely many of them

» Hardware division is expensive
Make nD grids part of the model to avoid it

» Design the model to expose extremely fine-grain concurrency
(e.g. between loop iterations!)

» Draw from the same pool of concurrency to hide latency

GPU Program 'Scopes’

Hardware CL adjective OpenCL CUDA

SIMD lane private Work Item Thread
SIMD Vector — Subgroup ~ Warp

Core local Workgroup Thread Block
Processor global NDRange Grid

GPU: Communication

What forms of communication exist at each scope?

< s domes, Vodur s‘wFHeg
- Sclrws-ck A +lmniw,; mmmw-@wwfme)
3

L - Clemss Veviagily s/ w'e se Yo Tonce
7 T

Can we just do locking like we might do on a CPU?

Wo: l‘v\o(c}o‘ fu prepe> s k7u£w4

GPU Programming Model: Commentary

» “Vector” / “Warp” / “Wavefront”

» Important hardware granularity
» Poorly/very implicitly represented

» What is the impact of reconvergence?

