Today	Announcements
FW M	Project Proposals!
FMM Fast solve	,

Using Multipole-to-Local

(Figure credit: G. Martinsson)

Come up with an algorithm that computes the interaction in the figure.

Using Multipole-to-Local

Come up with an algorithm that computes the interaction in the figure.

1. Compute multipolos and propagate 7. Evaluate Mrc translations for Cist 2 Cist V 3. Propagate Lown ward 4. Neighbor Gazes via Propagate Cist U
Cut. M

Using Multipole-to-Local: Next Level

(Figure credit: G. Martinsson)

Assuming we retain information from the previous level, how can we obtain a valid local expansion on the target box?

Using Multipole-to-Local: Next Level

Assuming w valid loca					s level, h	ow can	we obtai
vana roca	схранзю	II OII tile	target bo	· ·			

Define 'Interaction List'

For a box (b) the interaction lift 1b) consists of all boxes (b) so that

- b and l' are on the same level
- b and b' are well-sprawded (w-s is symmatric!)

- the parents of b and b' doubt

The Fast Multipole Method ('FMM')

Upward pass

- 1. Build tree (Magnos (O(n lyn))
- 2. Compute interaction lists
- 3. Compute lowest-level multipoles from sources
- 4. Loop over levels $\ell = L 1, \ldots, 2$:
 - 4.1 Compute multipoles at level ℓ by mp o mp

Overall algorithm: Now O(N) complexity.

Note: L levels, numbered $0, \ldots, L-1$. Loop indices above *inclusive*.

Downward pass

- 1. Loop over levels $\ell = 2, 3, \dots, L-1$:
 - 1.1 Loop over boxes b on level ℓ :
 - 1.1.1 Add contrib from I_b to local expansion by mp ightarrow loc
 - 1.1.2 Add contrib from parent to local exp by loc \rightarrow loc
- 2. Evaluate local expansion and direct contrib from 9 neighbors.

What about adaptivity?

Cist 1: direct Udz: MZL

CIST 3: MZP

LBLY: PZL

Figure credit: Carrier et al. ('88)

What about adaptivity?

Figure credit: Carrier et al. ('88)

Adaptivity: what changes?

```
- Two special cases:
source toolsing (List 4)
farget too by (List 3)
```

6-order

FMM: List of Interaction Lists

Make a list of cases:	

What about solving?

Likely computational goal: Solve a linear system $Ax = b$. How do our methods help with that?	

A Matrix View of Low-Rank Interaction

Only <i>parts of the matrix a</i> matrix perspective?	re low-rank!	What does	this look	like from a

(Recursive) Coordinate Bisection (RCB)

Block-separable matrices

$$A = \begin{bmatrix} D_1 & A_{12} & A_{13} & A_{14} \\ A_{21} & D_2 & A_{23} & A_{24} \\ A_{31} & A_{32} & D_3 & A_{34} \\ A_{41} & A_{42} & A_{43} & D_4 \end{bmatrix}$$

where A_{ii} has low rank: How to capture rank structure?

$$A_{ij} \sim (A_{ij})_{(i,j)} T_{ij}$$

Proxy Recap

Saw: If A comes from a kernel for which Green's formula holds, then the same skeleton will work for all of space, for a given set of sources/targets. What would the resulting matrix look like?