

## Solving Integral Equations

Given

$$(A\phi)(x) := \int_G K(x,y)\varphi(y)dy,$$

are we allowed to ask for a solution of

$$(\operatorname{Id} + A)\varphi = g?$$

## Attempt 1: The Neumann series

Want to solve

Formally:

$$\varphi - A\varphi = (I - A)\varphi = g.$$

$$\varphi = (I - A)^{-1}g.$$

$$\varphi = (I - A)^{-1}g.$$

What does that remind you of?



## Attempt 1: The Neumann series (II)

#### Theorem

$$A: X \to X$$
 Banach,  $||A|| < 1$   $(I - A)^{-1} = \sum_{k=0}^{\infty} A^k$  with  $||(I - A)^{-1}|| \le 1/(1 - ||A||)$ .

- ► How does this rely on completeness/Banach-ness?
- There's an iterative procedure hidden in this.

  (Called Picard Iteration. Of: Picard-Lindelöf theorem.)

  Hint: How would you compute  $\sum A^{k}G$ ► There's an iterative procedure hidden in this.
- Q: Why does this fall short?

## Compact Sets

#### Definition (Precompact/Relatively compact)

 $M \subseteq X$  precompact: $\Leftrightarrow$  all sequences  $(x_k) \subset M$  contain a subsequence converging in X

### Definition (Compact/'Sequentially complete')

 $M \subseteq X$  compact: $\Leftrightarrow$  all sequences  $(x_k) \subset M$  contain a subsequence converging in M

- ▶ Precompact ⇒ bounded
- ► Precompa (t ⇔ bounded (finite dim. only!)



## Compact Sets (II)

Counterexample to 'precompact  $\Leftrightarrow$  bounded'? ( $\infty$  dim)

## **Compact Operators**

X, Y: Banach spaces

#### Definition (Compact operator)

 $T: X \to Y$  is compact : $\Leftrightarrow T(bounded set)$  is precompact.

#### **Theorem**

- ►  $T, S \ compact \Rightarrow \alpha T + \beta S \ compact \leftarrow$
- ▶ One of T, S compact  $\Rightarrow$   $S \circ T$  compact
  - $igcap T_n$  all compact,  $T_n o T$  in operator norm  $\Rightarrow T$  compact

#### Questions:

- ▶ Let  $\dim T(X) < \infty$ . Is T compact?  $\subset$
- ▶ Is the identity operator compact? ( )  $d_{im}$   $\lambda < \infty$ .

#### Intuition about Compact Operators

- ► Compact operator: As finite-dimensional as you're going to get in infinite dimensions.
- Not clear yet—but they are moral ( $\infty$ -dim) equivalent of a matrix having low numerical rank.
- Are compact operators continuous (=bounded)?
- ► What do they do to high-frequency data?

  What do they do to low-frequency data?

  Compact operators are

  Smoothi

$$\int_{x} \left( e^{i\alpha x} \right) = i\lambda$$

#### Arzelà-Ascoli

Let  $G \subset \mathbb{R}^n$  be compact.

## Theorem (Arzelà-Ascoli)

 $U \subset C(G)$  is precompact iff it is bounded and equicontinuous.

#### ( | Equicontinuous means

[2cm]

# Arzelà-Ascoli: Proof Sketch



Arzelà-Ascoli: Proof Sketch

should that ind of x 1x1-x1=5  $|\gamma_{\lambda}(x) - \gamma_{\alpha}(x)|$ < / / / (x) - 4: (x) /+/4: (x) - Yu(x) + 17, (x;) - 4, (x)/ eght out pw. con v,

## Arzelà-Ascoli (II)

| Intuition?                           |
|--------------------------------------|
|                                      |
|                                      |
| "Uniformly continuous"?              |
|                                      |
|                                      |
| When does uniform continuity happen? |
|                                      |
|                                      |

(Note: Kress LIE 2nd ed. defines 'uniform equicontinuity' in one go.)

## Integral Operators are Compact

## Theorem (Continuous kernel ⇒ compact [Kress LIE 2nd ed. Thm. 2.20])

$$G \subset \mathbb{R}^m$$
 compact,  $K \in C(G^2)$ . Then

$$(A\phi)(x) := \int_G K(x,y)\phi(y)dy.$$

11 U//\_ = M

is compact on 
$$C(G)$$
.

is compact on 
$$C(G)$$
.

 $p_{il} \cup C(G)$ 

Use A-A. (a statement about compact sets) What is there to show?

Pick  $U \subset C(G)$ . A(U) bounded?

A(U) equicontinuous?

HY(x)- T/(y/A A 4(x) - A 4 (y)) = { le(x, 2)- le(y,2) / 19(2) |

use uniform

cont, to bond that

] A(4)= ~4

## Weakly singular

$$G \subset \mathbb{R}^n$$
 compact

#### Definition (Weakly singular kernel)

- $\triangleright$  K defined, continuous everywhere except at x=y
- ▶ There exist C > 0,  $\alpha \in (0, n]$  such that

$$|K(x,y)| \le C|x-y|^{\alpha-n} \qquad (x \ne y)$$

## Theorem (Weakly singular kernel $\Rightarrow$ compact [Kress LIE 2nd ed. Thm. 2.22])

K weakly singular. Then

$$(A\phi)(x) := \int_C K(x,y)\phi(y)dy.$$

is compact on C(G).



## Weakly singular: Proof Outline

| Outline the proof of 'Weakly singular kernel $\Rightarrow$ compact'. |
|----------------------------------------------------------------------|
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |