

Spectral Theory: Terminology

 $A: X \to X$ (bounded,) is a ... value:

Ax = /x (=) (A-11)x.

Definition (Eigenvalue)

There exists an element $\phi \in X$, $\phi \neq 0$ with $A\phi = \lambda \phi$.

Definition (Regular value)

The "resolvent" $(\lambda I - A)^{-1}$ exists and is bounded.

Can a value be regular and "eigen" at the same time?

nope

2 hot 1-to-1 =) eigenvedo What's special about ∞ -dim here? not regular =) alga? (AI-A)

Resolvent Set and Spectrum

Definition (Resolvent set)

$$\rho(A) := \{\lambda \text{ is regular}\}$$

Definition (Spectrum)

$$\sigma(A) := \mathbb{C} \setminus \rho(A)$$

Spectral Theory of Compact Operators

TEAA" compact - only for

Theorem

 $A: X \to X$ compact linear operator, $X \infty$ -dim.

Then:

- Suppor Dis ary value () (AI-A) = A exists $ightharpoonup 0 \in \sigma(A)$ (show!)
- $ightharpoonup \sigma(A)\setminus\{0\}$ consists only of eigenvalues $\begin{cases} \begin{cases} \$
- $\sigma(A) \setminus \{0\}$ is at most countable
- $\triangleright \sigma(A)$ has no accumulation point except for 0

Spectral Theory of Compact Operators: Proofs

Show first part.		
Show second part.		

Spectral Theory of Compact Operators: Implications

Rephrase last two: how many eigenvalues with $|\cdot| \geq R$?

Recap: What do compact operators do to high-frequency data?

Don't confuse I - A with A itself!

Outline

Introduction

Dense Matrices and Computatio

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solve

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problem

Back from Infinity: Discretizatio

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Recap: Layer potentials

$$(S\sigma)(x) := \int_{\Gamma} G(x - y)\sigma(y)ds_{y}$$

$$(S'\sigma)(x) := PV \hat{n} \cdot \nabla_{x} \int_{\Gamma} G(x - y)\sigma(y)ds_{y}$$

$$(D\sigma)(x) := PV \int_{\Gamma} \hat{n} \cdot \nabla_{y} G(x - y)\sigma(y)ds_{y}$$

$$(D'\sigma)(x) := f.p. \hat{n} \cdot \nabla_{x} \int_{\Gamma} \hat{n} \cdot \nabla_{y} G(x - y)\sigma(y)ds_{y}$$

Definition (Harmonic function)

$$\triangle u = 0$$

Where are layer potentials harmonic?

On the double layer again

Is the double layer actually weakly singular? Recap:

Definition (Weakly singular kernel)

- ightharpoonup K defined, continuous everywhere except at x=y
- ▶ There exist C > 0, $\alpha \in (0, n-1]$ such that

$$|K(x,y)| \le C|x-y|^{\alpha-n+1}$$
 $(x,y \in \partial\Omega, x \ne y)$

Actual Singularity in the Double Layer

- \triangleright Singularity with approach on y = 0?
- ightharpoonup Singularity with approach on x = 0?

So life is simultaneously worse and better than discussed.

How about 3D? $(-x/|x|^3)$

Would like an analytical tool that requires 'less' fanciness.

Cauchy Principal Value

But I don't want to integrate across a singularity! \rightarrow punch it out. Problem: Make sure that what's left over is well-defined bour dedness

Principal Value in *n* dimensions

Again:	Symmetry i	matters!		

What about even worse singularities?

Recap: Layer potentials

$$(S\sigma)(x) := \int_{\Gamma} G(x - y)\sigma(y)ds_{y}$$

$$(S'\sigma)(x) := \operatorname{PV} \hat{n} \cdot \nabla_{x} \int_{\Gamma} G(x - y)\sigma(y)ds_{y}$$

$$(D\sigma)(x) := \operatorname{PV} \int_{\Gamma} \hat{n} \cdot \nabla_{y} G(x - y)\sigma(y)ds_{y}$$

$$(D'\sigma)(x) := f.p. \ \hat{n} \cdot \nabla_{x} \int_{\Gamma} \hat{n} \cdot \nabla_{y} G(x - y)\sigma(y)ds_{y}$$

Important for us: Recover 'average' of interior and exterior limit without having to refer to off-surface values.

Green's Theorem

Theorem (Green's Theorem [Kress LIE 2nd ed. Thm 6.3])

$$\int_{\Omega} u \triangle v + \nabla u \cdot \nabla v = \int_{\partial \Omega} u(\hat{n} \cdot \nabla v) ds$$

$$\int_{\Omega} u \triangle v - v \triangle u = \int_{\partial \Omega} u(\hat{n} \cdot \nabla v) - v(\hat{n} \cdot \nabla u) ds$$

If $\triangle v = 0$ and u = 1, then

$$\int_{\partial\Omega} \hat{n} \cdot \nabla v = \mathbf{7}$$

Green's Formula

1 k= 0

What if $\triangle v = 0$ and u = G(|y - x|) in Green's second identity?

Theorem (Green's Formula [Kress LIE 2nd ed. Thm 6.5])

If
$$\triangle u = 0$$
, then

$$(S(\hat{n} \cdot \nabla u) - Du)(x) = \begin{cases} u(x) & x \in \Omega \\ \frac{u(x)}{2} & x \in \partial \Omega \\ 0 & x \notin \Omega \end{cases}$$

Green's Formula and Cauchy Data

Suppose I know 'Cauchy data' $(u|_{\partial\Omega}, \hat{n} \cdot \nabla u|_{\partial\Omega})$ of u. What can I do?

What if Ω is an exterior domain?

What if u = 1? Do you see any practical uses of this?

Mean Value Theorem $\nabla \mathcal{D} \mathcal{D} \mathcal{A}(r) = \frac{\chi}{r L R^2}$

$$\mathcal{D} \circ \mathsf{y}(\mathsf{v}) = \frac{\overset{>}{\times}}{(\mathsf{l} \times \mathsf{l})^2}$$

Theorem (Mean Value Theorem [Kress LIE 2nd ed. Thm 6.7])

If
$$\Delta u = 0$$
, $u(x) = \overline{\int}_{B(x,r)} u(y) dy = \overline{\int}_{\partial B(x,r)} u(y) dy$

Define *\(\frac{\cappa}{\cappa} \)?*

Trace back to Green's Formula (say, in 2D):

Maximum Principle

Theorem (Maximum Principle [Kress LIE 2nd ed. 6.9])

If $\triangle u = 0$ on compact set $\bar{\Omega}$: u attains its maximum on the boundary.

Suppose it were to attain its maximum somewhere inside an open set. . .

What do our constructed harmonic functions (layer potentials) do there?

•