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Simple and Periodic: Ewald Summation

Want to evaluate potential from an infinite periodic grid of sources:
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Ewald Summation: Constructing a Scheme

» Use unit cells to separate near/far.
But that's imperfect: Sources can still get arbitrarily close to targets.

» Use Fourier transform to compute far contribution.
But that’s also imperfect:

» Fourier can only sum the entire (periodic) potential
So: Cannot make exception for near-field

» G non-smooth is the interesting case — Long Fourier series —
expensive (if convergent at all)

Idea: Only operate on the smooth (‘far’) parts of G.



Ewald Summation: Screens -
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Ewald Summation: Field Splitting

We can split the computation (from the perspective of a unit cell target)

as follows:
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Ewald Summation: Convolution Recap

(F + g)(x) = /R F(€) » glx — £)dE.

The above sum then:

Nsrc
P = (x — G(x,0)) (w—)Zdele)

i€Z j=1

with the convention f(x) = f * ({ — J(§ — x)). Convolution is linear (in
both arguments) and turns into multiplication under Fourier transforms:

F{fxg}=Ff-Fg,
possibly with a constant depending on normalization. Also:
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Ewald Summation: Summation (1D for simplicity)
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Ewald Summation: Remarks

In practice: Fourier transforms carried out discretely, using FFT.

> Additional error contributions from interpolation
(small if screen smooth enough to be well-sampled by mesh)

» O(Nlog N) cost (from FFT)
» Need to choose evaluation grid (‘mesh’)
» Resulting method called Particle-Mesh-Ewald (‘PME’)



Barnes-Hut: Putting Multipole Expansions to Work

(Figure credit: G. Martinsson)



Barnes-Hut: The Task At Hand

Want: All-pairs interaction.
Caution:

» In these (stolen) figures: targets sources

» Here: targets and sources




Barnes-Hut: Putting Multipole Expansions to Work
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(Figure credit: G. Martinsson)



Barnes-Hut: Putting Multipole Expansions to Work
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Barnes-Hut: Box Targets

For sake of discussion, choose one ‘box’ as targets.
Q: For which boxes can we then use multipole expansions?




Barnes-Hut: Putting Multipole Expansions to Work

(Figure credit: G. Martinsson)



Barnes-Hut: Accuracy

With this computational outline, what's the accuracy?
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Q: Does this get better or worse as dimension increases?



Barnes-Hut (Single-Level): Computational Cost

What's the cost of this algorithm? m= & /I/
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Barnes-Hut Single Level Cost: Observations




Box Splitting
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(Figure credit: G. Martinsson)



