HWZ dye - PME - Barnes-Hut - Fast Multipole - Olinch solver

Simple and Periodic: Ewald Summation

Want to evaluate potential from an infinite periodic grid of sources:

Ewald Summation: Constructing a Scheme

- Use unit cells to separate near/far.
 But that's imperfect: Sources can still get arbitrarily close to targets.
- Use Fourier transform to compute far contribution. But that's also imperfect:
 - ► Fourier can only sum the *entire* (periodic) potential So: Cannot make exception for near-field
 - ▶ G non-smooth is the interesting case \rightarrow Long Fourier series \rightarrow expensive (if convergent at all)

Idea: Only operate on the smooth ('far') parts of G.

Ewald Summation: Screens

Ewald Summation: Field Splitting

We can split the computation (from the perspective of a unit cell target) as follows:

$$(x \mapsto \delta(x - y)) * (x \mapsto \delta(x, 0)) = \hat{\delta}(x - y)$$

$$(see leter)$$

Ewald Summation: Convolution Recap

$$(f*g)(x) = \int_{\mathbb{R}} f(\xi) \bullet g(x-\xi) d\xi.$$

The above sum then:

$$\psi = (x \mapsto G(x,0)) * \left(x \mapsto \sum_{i \in \mathbb{Z}} \sum_{j=1}^{N_{\mathsf{src}}} \delta(x - y_j - i)\right)$$

with the convention $f(x) = f * (\xi \mapsto \delta(\xi - x))$. Convolution is linear (in both arguments) and turns into multiplication under Fourier transforms:

$$\mathcal{F}\{f*g\} = \mathcal{F}f \cdot \mathcal{F}g,$$

possibly with a constant depending on normalization. Also:

$$\mathcal{F}\left\{\sum_{i\in\mathbb{Z}}\delta(x-i)\right\}(\omega)\neq\sum_{\mathbf{j}\in\mathbb{Z}}\delta(\omega-\mathbf{j}).$$

Ewald Summation: Summation (1D for simplicity)

Interesting bit: How to sum G_{LR} . $\overline{\forall} (\beta(x-y))^{(y)} e^{-2\pi i y} \widetilde{\forall} f(\beta \omega)$

$$\frac{f(\omega)}{f(\omega)} = O(1)$$

$$\frac{f(\omega)}{f(\omega)} = O(\frac{1}{\omega})$$

$$\frac{f(\omega)}{f(\omega)} = O(\frac{1}{\omega})$$

$$\frac{f(\omega)}{f(\omega)} = O(\frac{1}{\omega})$$

Ewald Summation: Remarks

In practice: Fourier transforms carried out discretely, using FFT.

- Additional error contributions from interpolation (small if screen smooth enough to be well-sampled by mesh)
- \triangleright $O(N \log N)$ cost (from FFT)
- ► Need to choose evaluation grid ('mesh')
- Resulting method called Particle-Mesh-Ewald ('PME')

(Figure credit: G. Martinsson)

Barnes-Hut: The Task At Hand

Want: All-pairs interaction.

Caution:

- ► In these (stolen) figures: targets sources
- ► Here: targets and sources

(Figure credit: G. Martinsson)

Barnes-Hut: Box Targets

For sake of discussion, choose one 'box' as targets.
Q: For which boxes can we then use multipole expansions?

(Figure credit: G. Martinsson)

Barnes-Hut: Accuracy

With this computational outline, what's the accuracy?

Q: Does this get better or worse as dimension increases?

Barnes-Hut (Single-Level): Computational Cost

	What's the cost of this algorithm?	m = (N
N = # particles K = # terms in impole exp. un = # particles in a box Step Compart modes Compart modes L valengh modes M/m V/m V/m Sclose box os 9 (N/m boxes) N/m N/m N/m N/m N/m N/m N/m N/	N = # padiclos K = # Jems in impole exp. un = # padicles in a box Step Now often Compark mooles N/m t vulnak mooles N/m N	Kin K	" '

Barnes-Hut Single Level Cost: Observations

Box Splitting

(Figure credit: G. Martinsson)