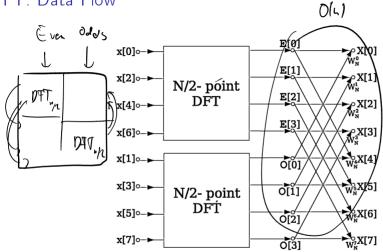
Announcements Today - HW3 - Projects - Bullertly - IEs for PDE solving - Office hour moved to 4,30 - Theory

# FFT: Data Flow



Perhaps a little bit like a butterfly?

### Fourier Transforms: A Different View

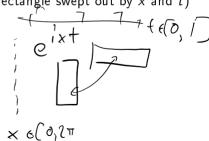
#### Claim:

The [numerical] rank of the normalized Fourier transform with kernel  $e^{i\gamma xt}$  is bounded by a constant times  $\gamma$ , at any fixed precision  $\epsilon$ .

(i.e. rank is bounded by the area of the rectangle swept out by x and t)

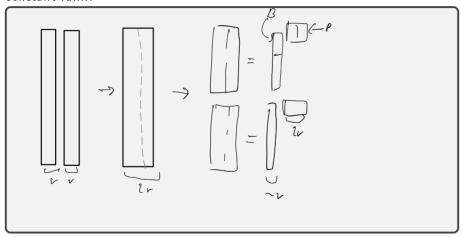
O'Neil et al. '10]

Demo: Butterfly Factorization (Part I)



## Recompression: Making use of Area-Bounded Rank

How do rectangular submatrices get expressed so as to reveal their constant rank?



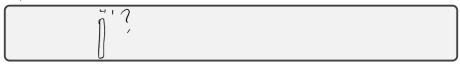
#### Observations

#### Demo: Butterfly Factorization (Part II)

For which types of matrices is the Butterfly factorization guaranteed accurate?

For which types of  $n \times n$  matrices does the butterfly lead to a reduction in cost?

Explore the limit cases of the characterization.



## Observations: Cost



What is the cost (in the reduced-cost case) of the matvec?

| Comments? |  |  |  |  |  |   |
|-----------|--|--|--|--|--|---|
|           |  |  |  |  |  | П |
|           |  |  |  |  |  |   |
|           |  |  |  |  |  |   |

#### Outline

Introduction

Dense Matrices and Computatio

Tools for Low-Rank Linear Algebra

Rank and Smoothnes

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problem:

Back from Infinity: Discretization

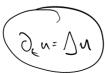
Computing Integrals: Approaches to Quadratur

Going General: More PDEs

## PDEs: Simple Ones First, More Complicated Ones Later

Laplace 
$$\triangle u = 0$$

- Steady-state  $\partial_t u = 0$  of wave propagation, heat conduction
- Electric potential u for applied voltage
- Minimal surfaces/"soap films"
- ightharpoonup 
  abla u as velocity of incompressible flow



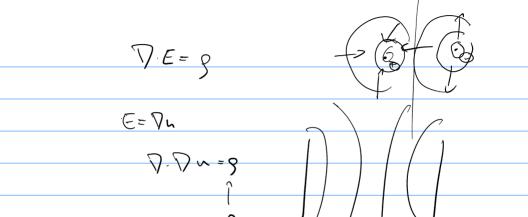
#### Helmholtz

$$\triangle u + k^2 u = 0$$

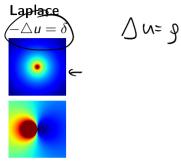
Assume time-harmonic behavior  $ilde{u}=e^{\pm i\omega t}u(x)$  in time-domain wave equation:

$$\partial_t^2 \tilde{u} = \triangle \tilde{u}$$

- Sign in  $\tilde{u}$  determines direction of wave: Incoming/outgoing if free-space problem
- ► Applications: Propagation of sound, electromagnetic waves



#### **Fundamental Solutions**



#### Helmholtz

Helmholtz 
$$\triangle u + k^2 u = \delta$$



How do you assign a precise meaning to the statement with the  $\delta$ -function?

$$\int (x) \rightarrow \int \int (x) \varphi(x) dx$$

## Green's Functions

| Vhy care about Green's functions?                                          |
|----------------------------------------------------------------------------|
|                                                                            |
|                                                                            |
| •                                                                          |
|                                                                            |
| Vhat is a non-free-space Green's function? I.e. one for a specific domain? |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |

# Green's Functions (II)

| Why not just use domain Green's functions?                   |  |
|--------------------------------------------------------------|--|
|                                                              |  |
|                                                              |  |
|                                                              |  |
|                                                              |  |
| What if we don't know a Green's function for our PDE at all? |  |
|                                                              |  |
|                                                              |  |
|                                                              |  |
|                                                              |  |