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‘Off-the-shelf” ways to compute integrals

How do | compute an integral of a nasty singular kernel?

Symbolic integration
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Singular and Near-Singular Quadrature
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Numerically distinct scenarios:
» Near-Singular quadrature
» Integrand nonsingular
» But may locally require lots of
» Adaptive quadrature works, but. .
» Singular quadrature

» Integrand singular
» Conventional quadrature fails



Kussmaul-Martensen quadrature
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Theorem (A special integral [Kress LIE Lemma 8.21])
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Why is that exciting?

Demo: Kussmaul-Martensen quadrature h él,\
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Singularity Subtraction

/(Thing X you would like to integrate)

= /(Thing Y you can integrate)

+/<Difference X — Y which iwuy»
Give a typical application. Sra0ol\

Drawbacks?







High-Order Corrected Trapezoidal Quadrature

» Conditions for new nodes, weights

(— linear algebraic system, dep. on n)

to integrate

(smooth) - (singular) 4+ (smooth)
> Allowed singularities: |x|* (for [A] < 1), log |x|
» Generic nodes and weights for log singularity
» Nodes and weights copy-and-pasteable from paper
[Kapur, Rokhlin ‘97] &

fper;%/conceptualy similar:




Generalized Gaussian

» “Gaussian’:

» Integrates 2n functions exactly with n nodes
» Positive weights

» Clarify assumptions on system of functions (“Chebyshev system”) for
which Gaussian quadratures exist

» When do (left/right) singular vectors of integral operators give rise to
Chebyshev systems?
» In many practical cases!

» Find nodes/weights by Newton's method
» With special starting point

» Very accurate
» Nodes and weights for download
[Yarvin/Rokhlin ‘98]



Singularity cancellation: Polar coordinate transform

|| Kexyowds,

R
/ / K(x,x + r)é(x + r)d(angles) r dr
0 Jx+redQNoB(x,r)

/R/ Kiess singulal'(x7 X +r) o(x + r)d(angles) r dr
0 Jx+redQndB(x,r) r

where Kiess singular = K-r.



Quadrature on Triangles

Problem: Singularity can sit anywhere in triangle
— need lots of quadrature rules (one per target)



Quadrature on Triangles

Problem: Singularity can sit anywhere in triangle
— need lots of quadrature rules (one per target)



Kernel regularization
Singularity makes integration troublesome: Get rid of it!

S — _> )
(x —y)? (x—y)?+e
Use Richardson extrapolation to recover limit as € — 0.
(May also use geometric motivation: limit along line towards singular
point.)
Primary drawbacks:
» Low-order accurate

» Need to make € smaller (i.e. kernel more singular) to get better
accuracy

Can take many forms—for example:
» Convolve integrand to smooth it
(— remove/weaken singularity)
» Extrapolate towards no smoothing
Related: [Beale/Lai ‘01]



Acceleration and Quadature
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How can singular quadrature and FMM acceleration be made compatible?
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FMMs and other Layer Potentials

How does an FMM evaluate a double layer?
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How does an FMM evaluate 5’7
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What effect does this have on accuracy?

D deoces wol Joy au ol
S foses aw sde”




Outline

Computing Integrals: Approaches to Quadrature

Quadrature by expansion (‘QBX’)



Layer Potential Evaluation: Some Intuition

log,,(Error)



QBX: Idea

Expansion center

“Naive”
potent|al

Potential from
expansion




QBX: An Experiment

-6.0
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QBX: An Experiment
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QBX: Notation, Basics

Graf's addition theorem




QBX: Notati =
- o o T Y
Graf's ad Requires: |x — ¢| < |x" — ¢| ("local expansion”)
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QBX: Formulation, Discretization

Compute layer potential on the disk as

Sko(x fOJ/ (kp)e e 10
=P

with

So is a smooth function up to I



QBX: Formulation, Discretization

den= C St (1004
Compute layer potential on the disk as = S {J, ( / r{j“j

p
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So is a smooth function up to T.



Quadrature by Expansion (QBX)
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Truni/\ati(‘))rl‘e‘rror

[K, Barnett, Greengard, O'Neil JCP ‘13]

Error < (C

Quadrature error
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Achieving high order

q
Error < (C P4 C <h> ) lloll
N~ r
~——

Truncation error
Quadrature error

Two approaches:

» Asymptotically convergent: r = /h

» QError — 0 as 0
> @ Low orderyhlP¥1)/2
» Convergent with ed precision: r = b5h

» @Error A 0ash—0
> @ High order: hP*1 to controlled precision € := (1/5)9



Other layer potentials

Can't just do single-layer potentials:

8n , k\x c)e™ pu(x') dx'.
Even easier for target derivatives (S’ et al.): Take derivative of local
expansion.

Analysis says: Will lose an order.

Slight issue: QBX computes one-sided limits.

Fortunately: Jump relations are known—e.g.

(PV)D*u(x)lr = lim Dpu(x*) F +p(x).

xEx 2

Alternative: Two-sided average — Preferred because of conditioning



