
Class web page

https://bit.ly/fastalg-s24

contains:
▶ Class outline
▶ Notes
▶ Demos
▶ Assignments
▶ Discussion forum
▶ Grading
▶ Video

7

Why study this at all?

▶ Finite difference/element methods are inherently
▶ ill-conditioned
▶ tricky to get high accuracy with

▶ Build up a toolset that does not have these flaws
▶ Plus: An interesting/different analytical and computational point of

view
▶ If you’re not going to use it to solve PDEs, it (or the ideas behind it)

will still help you gain insight.

8

FD/FEM: Issues

Idea of these methods:
1. Take differential equations
2. Discretize derivatives
3. Make linear system
4. Solve

So what’s wrong with doing that?

9

Discretizing Derivatives: Issues?

10

Discretizing Derivatives: Issues?
Result: The better we discretize (the more points we use), the worse the
condition number gets.
Demo: Conditioning of Derivative Matrices
To be fair: Multigrid works around that (by judiciously using fewer points!)
But there’s another issue that’s not fixable.

Q: Are these problems real?

So this class is about starting fresh with methods that (rigorously!) don’t
have these flaws!

11

Bonus Advertising Goodie
Both multigrid and fast/IE schemes ultimately are O(N) in the number of
degrees of freedom N.

12

Open Source <3
These notes (and the accompanying demos) are open-source!

Bug reports and pull requests welcome:
https://github.com/inducer/fast-alg-ie-notes

Copyright (C) 2013 – 24 Andreas Kloeckner

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. 13

Outline
Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs
14

Matvec: A Slow Algorithm

Matrix-vector multiplication: our first ‘slow’ algorithm.
O(N2) complexity.

βi =
NX

j=1

Aijαj

Assume A dense.

15

Matrices and Point Interactions

Aij = G (xi , yj)

Does that actually change anything?

16

Matrices and Point Interactions

Aij = G (xi , yj)

Graphically, too:

17

Matrices and point Interactions

ψ(xi) =
NX

j=1

G (xi , yj)φ(yj)

This feels different.

Q: Are there enough matrices that come from globally defined G to make
this worth studying?

18

Point Interaction Matrices: Examples (I)

19

Point Interaction Matrices: Examples (II)

20

Point Interaction Matrices: Examples (III)

So yes, there are indeed lots of these things.

21

Integral Operators
Why did we go through the trouble of rephrasing matvecs as

ψ(xi) =
NX

j=1

G (xi , yj)φ(yj)?

22

Cheaper Matvecs

ψ(xi) =
NX

j=1

G (xi , yj)φ(yj)

So what can we do to make evaluating this cheaper?

23

Fast Dense Matvecs
Consider

Aij = uivj ,

let u = (ui) and v = (vj).
Can we compute Ax quickly? (for a vector x)

24

Fast Dense Matvecs (II)

A = u1vT1 + · · ·+ uKvTK

Does this generalize? What is K here?

25

Low-Rank Point Interaction Matrices
Usable with low-rank complexity reduction?

ψ(xi) =
NX

j=1

G (xi , yj)φ(yj)

26

Numerical Rank

What would a numerical generalization of ‘rank’ look like?

27

Eckart-Young-Mirsky Theorem
Theorem (Eckart-Young-Mirsky)

SVD A = UΣV T . If k < r = rank(A) and

Ak =
kX

i=1

σiuiv
T
i ,

then
min

rank(B)=k
|A− B|2 = |A− Ak |2 = σk+1.

Q: What’s that error in the Frobenius norm?
So in principle that’s good news:
▶ We can find the numerical rank.
▶ We can also find a factorization that reveals that rank (!)

Demo: Rank of a Potential Evaluation Matrix (Attempt 2)
28

Constructing a tool

There is still a slight downside, though.

29

