Kevien:

- lut opeantors

- LRA
$\rightarrow S U 0$

Goals:

- Vandomizel LRA
- two differear foms
- HW)

$$
\begin{aligned}
A B C & =(A B) C=A(B C) \\
A B x & =(A B) x=A\left(B_{x}\right) \\
(F \varphi)(y) & =\int_{a}^{t} k_{1}(x, y) \varphi(y) d y \\
& =\int_{a}^{b} \tilde{k}_{1}(x, y) \varphi(y) d y
\end{aligned}
$$

Eckart-Young-Mirsky Theorem

Theorem (Eckart-Young-Mirsky)

SUD $A=\left(U \Sigma V^{\top}\right.$, If $k<r=\operatorname{rank}(A)$ and $\quad U, \checkmark$ coth.

$$
A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}, \quad \Sigma=d \log (\vec{\sigma})
$$

then

$$
\min _{\underset{\operatorname{rank}(B)=k}{ }|A-B|_{2}=\underbrace{\left|A-A_{k}\right|_{2}}=\underbrace{\sigma_{k+1}}}
$$

Q: What's that error in the Frobenius norm? So in principle that's good news:

- We can find the numerical rank.
- We can also find a factorization that reveals that rank (!) Demo: Rank of a Potential Evaluation Matrix (Attempt 2)

Constructing a tool
There is still a slight downside, though.

- Forming the matrix: $O\left(N^{1}\right)$
- Computing the SVD: $O\left(N^{3}\right)$

too expunsi/c

Representation
What does all this have to do with (right-)preconditioning?

$$
A_{a}^{2}=b
$$

$$
\begin{aligned}
\rightarrow \Delta u * O & \text { on } \Omega \\
u & =g \text { on } \partial \Omega
\end{aligned}
$$

(ext precond: $\quad M_{1} A \vec{L}-M, b$
Right presort: $\quad \stackrel{u}{u}=M_{2}^{2} \vec{\sigma}$

$$
\left(A M_{2}\right)^{\vec{v}}=\vec{b}
$$

tall + skinny 1 right-precondifion away the PDE"

Representation (in context)

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Low-Rank Approximation: Basics
Low-Rank Approximation: Error Control
Reducing Complexity

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Low-Rank Approximation: Basics
Low-Rank Approximation: Error Control
Reducing Complexity

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Rephrasing Low-Rank Approximations
SVD answers low-rank-approximation ('LRA') question. But: too expensive. First, rephrase the LRA problem:
$A \approx Q Q^{\top} A$
Cprojectio foom

$$
Q=\prod \text { orth. }
$$

proj. \rightarrow faid fom?
$A x \underbrace{Q}_{B} \underbrace{O^{\dagger} A}_{C}$

Using LRA bases
If we have an LRA basis Q, can we compute an SVD?
(1) $B=Q^{\top} A \in \mathbb{R}^{k \times n}$
(2) $B=\vec{U} \angle V^{\top}$
$\bar{U} \in \mathbb{R}^{k \times k}$
(3) $A \approx Q Q^{\top} A=Q B=\underbrace{Q \bar{u}}_{n \times n} \varepsilon V^{\top}\{U=Q \bar{W}$

Complexities: $A \in R^{n+n} \quad Q \in \eta^{n \times k}$
(1) $k N^{2}$
(2) $u^{2} N$
(3) $k^{2} N$

Finding an LRA basis
How would we find an LRA basis?
(1) Using the SVD (...)
(2) use a different way?

Gneed a way to make eir. rouk tradeoff

- "fixed_raml"
- adepriv.

Giving up optimality
What problem should we actually solve then?

$$
\begin{gathered}
\left\|A-Q Q^{\top} A\right\|_{2} \approx m m_{\operatorname{rmh}(x) s h} A-x \|_{2} \\
\text { where } Q \in \mathbb{R}^{n \times(k+p)} \\
p \text { is the } \\
\text { extra rant. }
\end{gathered}
$$

Recap: The Power Method
How did the power method work again?
A square eigenvalues:

$$
\begin{aligned}
& \quad\left|\lambda_{1}\right| \geqslant\left|\lambda_{2}\right| \geqslant \ldots \geqslant\left|\lambda_{n}\right| \geqslant 0 \quad A_{1} \vec{y}_{i}=\lambda_{i} \vec{y}_{i} \\
& \vec{x}_{0}=\alpha_{1} \vec{y}_{1} \cdots+\vec{y}_{y_{2}} \\
& \vec{x}_{0} \in \mathbb{R}^{n} \text { random } \\
& A^{q} \vec{x}_{0} \leadsto \quad \rightarrow \quad \frac{A^{q} \vec{x}_{0}}{\lambda_{1}^{q}}=\frac{\alpha_{1} \lambda_{1}^{q} \vec{y}_{1}}{\lambda_{1}^{q}}+\frac{\alpha_{1} \lambda_{2}^{q} \vec{b}_{2}}{\lambda_{1}^{q} \mid}+\cdots \\
& \varepsilon \mid
\end{aligned}
$$

How do we construct the LRA basis?
Put randomness to work:
(1) Drow on $n \times l$ Canssian iid randon matini Ω
(2) $y=A \Omega$
(3) $\quad y=a R$ $\left\{\begin{array}{l}\text { wat: more } \\ \text { poonn }\end{array}\right.$

Tweaking the Range Finder (I)
Can we accelerate convergence?

$$
\begin{aligned}
& y=\left(A A^{\top}\right)^{h} A \\
& A=u \varepsilon v^{\top} \\
& Y=\left(u \varepsilon v^{\top} \forall \varepsilon u^{\top}\right)^{u} u \varepsilon v^{\top} \\
& \sigma_{i}\left(A A^{\dagger} A\right)=\sigma_{i}(A)^{3}
\end{aligned}
$$

Tweaking the Range Finder (II)

What is one possible issue with the power method?

- overt low \rightarrow noounliue
- non. orth \rightarrow onthogonalite.

Even Faster Matvecs for Range Finding

Assumptions on Ω are pretty weak-can use more or lessamything we want. \rightarrow Make it so that we can apply the matvec $A \Omega$ in $O(n \log \ell)$ time. How? Pick Ω as a carefully-chosen subsampling of the Fourier tramsform.

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Low-Rank Approximation: Error Control
Reducing Complexity

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Errors in Random Approximations

If we use the randomized range finder, how close do we get to the optimal answer?

Theorem

For an $m \times n$ matrix A, a target rank $k \geqslant 2$ and an oversampling parameter $p \geqslant 2$ with $k+p \leqslant \min (m, n)$, with probability $1-6 \cdot p^{-p}$,

$$
\left|A-Q Q^{T} A\right|_{2} \leqslant(\underbrace{1+11 \sqrt{k+p} \sqrt{\min (m, n)}) \sigma_{k+1} .}
$$

(given a few more very mild assumptions on p)
[Halko/Tropp/Martinsson '10, 10.3]
Message: We can probably (!) get away with oversampling parameters as small as $p=5$.

A-posteriori and Adaptivity
The result on the previous slide was a-priori. Once we're done, can we find out 'how well it turned out'?

$$
\begin{aligned}
E & =A-Q Q^{+} A \\
\|E\|_{\imath} & =O_{1}(E) \\
\omega & \in \|^{2} \quad \text { lid Gaussian } \\
\|E\|_{2} & \approx \max \frac{\|E \stackrel{\rightharpoonup}{\omega}\|_{2}}{\|\dot{\omega}\|_{2}}
\end{aligned}
$$

Adaptive Range Finding: Algorithm
(1) Compute (small-ish) Fixod-rale $\angle R A$
(2) Cherle erro
(3) Add more columns ifnoeded.

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Low-Rank Approximation: Basics
Low-Rank Approximation: Error Control
Reducing Complexity
Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

