


Eckart-Young-Mirsky Theorem
Theorem (Eckart-Young-Mirsky)

SVD A = UΣV T . If k < r = rank(A) and

Ak =
kX

i=1

σiuiv
T
i ,

then
min

rank(B)=k
|A− B|2 = |A− Ak |2 = σk+1.

Q: What’s that error in the Frobenius norm?
So in principle that’s good news:
▶ We can find the numerical rank.
▶ We can also find a factorization that reveals that rank (!)

Demo: Rank of a Potential Evaluation Matrix (Attempt 2)
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Constructing a tool

There is still a slight downside, though.
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Representation

What does all this have to do with (right-)preconditioning?

30



Representation (in context)
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Rephrasing Low-Rank Approximations
SVD answers low-rank-approximation (‘LRA’) question. But: too
expensive. First, rephrase the LRA problem:
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Using LRA bases

If we have an LRA basis Q, can we compute an SVD?
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Finding an LRA basis

How would we find an LRA basis?
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Giving up optimality

What problem should we actually solve then?
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Recap: The Power Method

How did the power method work again?
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How do we construct the LRA basis?

Put randomness to work:
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Tweaking the Range Finder (I)

Can we accelerate convergence?
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Tweaking the Range Finder (II)

What is one possible issue with the power method?
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Even Faster Matvecs for Range Finding

Assumptions on Ω are pretty weak–can use more or less anything we want.
→ Make it so that we can apply the matvec AΩ in O(n log ℓ) time.
How? Pick Ω as a carefully-chosen subsampling of the Fourier transform.
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Errors in Random Approximations

If we use the randomized range finder, how close do we get to the optimal
answer?

Theorem
For an m × n matrix A, a target rank k ⩾ 2 and an oversampling
parameter p ⩾ 2 with k + p ⩽ min(m, n), with probability 1 − 6 · p−p,

���A− QQTA
���2 ⩽

�
1 + 11

p
k + p

p
min(m, n)

�
σk+1.

(given a few more very mild assumptions on p)

[Halko/Tropp/Martinsson ‘10, 10.3]

Message: We can probably (!) get away with oversampling parameters as
small as p = 5.
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A-posteriori and Adaptivity

The result on the previous slide was a-priori. Once we’re done, can we find
out ‘how well it turned out’?
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Adaptive Range Finding: Algorithm
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