$\frac{\text { Announceneats }}{||W|}$
SRFT \rightarrow see forum Gollow-up

Gouls.

- Approx SVO in O(N) tive
- rRQR
- Interpolutise decoup.

Reviw:

- "range finder \rightarrow alaptive
- recoustriching theSUD
$U<V^{T}=\underbrace{Q^{T} A}_{k \times N}$
Computings $Q^{\top} A^{k \times N}$ is $O\left(N^{2} k\right)$

Errors in Random Approximations

If we use the randomized range finder, how close do we get to the optimal answer?

Theorem

For an $m \times n$ matrix A, a target rank $k \geqslant 2$ and an oversampling parameter $p \geqslant 2$ with $k+p \leqslant \min (m, n)$, with probability $1-6 \cdot p^{-p}$,

$$
\left|A-Q Q^{T} A\right|_{2} \leqslant(1+11 \sqrt{k+p} \sqrt{\min (m, n)}) \sigma_{k+1} .
$$

(given a few more very mild assumptions on p)
[Halko/Tropp/Martinsson '10, 10.3]
Message: We can probably (!) get away with oversampling parameters as small as $p=5$.

A-posteriori and Adaptivity
The result on the previous slide was a-priori. Once we're done, can we find out 'how well it turned out'?

$$
\begin{aligned}
& \|E\|\left\|A-Q Q^{\dagger} A\right\| \\
& \|E\|_{2} \approx \frac{\| A \overrightarrow{\omega_{2}}}{\|\vec{i}\|_{2}} \quad \text { evert }^{G l a u s s l u} \text { lid }
\end{aligned}
$$

Adaptive Range Finding: Algorithm
(see above)

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Low-Rank Approximation: Basics
Low-Rank Approximation: Error Control
Reducing Complexity
Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Rank-revealing/pivoted QR

$$
P A=C M
$$

Sometimes the SVD is too good (aka expensive)-we may need less accuracy/weaker promises, for a significant decrease in cost.

$$
\begin{aligned}
& \begin{array}{l}
A \Pi=Q R=Q\left[\begin{array}{ll}
R_{11} & R_{12} \\
0 & \Omega_{2 \eta}
\end{array}\right] \\
R_{11} \in \Pi^{k \times k}
\end{array} \\
& \left\|R_{22}\right\|_{2} \text { hopecally small } \\
& \left\|R_{112}\right\| \text { ? no reason that should be small } \\
& \text { Q orthogonal } \\
& \pi \text { is a permutation }
\end{aligned}
$$

Using RRQR for LRA

- $\sigma_{k+1} \leq\left\|R_{u}\right\|_{2}$
- Do precision, $\left\|\eta_{12}\right\|_{2}, A$ has at most numb . rank la. (Golnb/von Loan, chiS)
Also suitable for LRA, but:
need heuristic to stop half-way Does not qualify if Gull matrices are required.

Interpolative Decomposition (ID): Definition
Would be helpful to know columns of A that contribute 'the most' to the rank.
(orthogonal transformation like in QR 'muddies the waters')
If A has rank (k), then $\quad \vec{j}$ is a k-long index .

$$
A_{m \times n}=\left(A_{(i, j)}\right)_{m \times k} P_{k \times n}
$$

- k columns of P contain a single airy of 1
- "P is well-conditione a^{n}
allentries are bounded by 2.

ID: Computation
Assume rank (A) $=$ le
How do we construct this (from RRQR): (short/fat case)

$$
A_{m \times m \times n} \prod_{m \times k}=\underset{m \times R_{11} R_{12}}{k \times n} \quad B_{m \times k}=\underset{m \times h}{Q} R_{k \times n}
$$

Q : What is P, in terms of the RRQR?

$$
\left.\begin{array}{c}
P=\left[\begin{array}{ll}
1 d & R_{11}^{-1} R_{12}
\end{array}\right] \pi^{\top} \\
B P=Q R_{11}[1 d \\
\left.R_{11}^{-1} R_{1}\right]
\end{array}\right] \pi^{\top} .
$$

ID Q vs ID A

What does row selection mean for the LRA?

$$
\begin{aligned}
& A \approx Q Q^{\top} A \\
& \text { Supplase I vom a row } 10 \text { on } Q: Q \approx P Q_{C, 1: J} \\
& \begin{array}{l}
A_{(j]}^{1 d} \approx A_{(j)} P_{(j)} Q_{[j]} Q^{\top} A \\
Q^{\top} A
\end{array}
\end{aligned}
$$

[Martinsson, Rokhlin, Tygert '06]

ID: Remarks

Slight tradeoff here: what?

How would we use the ID in the context of the range finder?

Demo: Interpolative Decomposition

