Announcements

- Office hours moved to Fri 2/14 @ 10:30
- HU1

Review

CQA:

\[A \times _ _ _ \] (compressed form)

\[\text{uncompressed} \]

Proof:

\[Q \]

\[Q^t A \]

ID → P

\[\text{compressed form available cheaply for the ID} \]

\[\text{"commutative property"} \]
What does row selection mean for the LRA?

- Suppose we have PLRA: \(A \approx Q Q^T A \)
- Row ID: \(Q \approx P Q_{(j)} \)

\[
A \approx P Q_{(j)} Q^T A = A_{(j)} \approx P_{(j)} Q_{(j)} Q^T A
\]

\[
P A_{(j)} \approx P Q_{(j)} Q^T A \approx A
\]

[Martinsson, Rokhlin, Tygert ‘06]
Slight tradeoff here: what?

Move approximations.

How would we use the ID in the context of the range finder?

- "Compress" (i.e. throw away rows) as soon as possible.
- Compute only decompress at the very end.

Demo: Interpolative Decomposition
What does the ID buy us?
Name a property that the ID has over other factorizations.

Commutes with other factorizations

All our randomized tools have two stages:
1. Find ONB of approximate range
2. Do actual work only on approximate range

Complexity?

So far: \(O(n^{1/2}) \)

What is the impact of the ID?

Avoids formation of \(QA^T A \)
Leveraging the ID for SVD (I)

Build a low-rank SVD with row extraction.

1. Get j and P so that $A = PA_{j:j}$

2.
\[
\left(\overline{A_{[j:j]}} \right)^T = \overline{Q} \overline{R}
\]

where $N \times k$ \hspace{1cm} $N \times k$

3. Upsample \overline{R}:
\[
\overline{R} = \overline{P} \overline{R}^T
\]

where $N \times k$ \hspace{1cm} $N \times k$

1. SVD
\[
\overline{Z} = \overline{U} \overline{S} \overline{V}^T
\]

where $N \times k$ \hspace{1cm} $N \times k$ \hspace{1cm} $k \times k$
Leveraging the ID for SVD (II)

In what way does this give us an SVD of A?

\[
U \Sigma (\tilde{Q} \tilde{V})^T = \text{SVD}
\]

\[
= U \Sigma \tilde{V}^T \tilde{Q}^T
\]

\[
= \Sigma \tilde{Q}^T
\]

\[
= \rho \tilde{Q}^T = \rho A_{\text{approx}} \approx A
\]
Q: Why did we need to do the row QR?

\[A_{QQ} = U \Sigma V^T \]

\[PA_{QQ} - \overset{?}{\overbrace{PU \Sigma V^T}} \]

\[\text{orth?} \]
Where are we now?

- We have observed that we can make matvecs faster if the matrix has low-ish numerical rank.
- In particular, it seems as though if a matrix has low rank, there is no end to the shenanigans we can play.
- We have observed that some matrices we are interested in (in some cases) have low numerical rank (cf. the point potential example).
- We have developed a toolset that lets us obtain LRAs and do useful work (using SVD as a proxy for “useful work”) in $O(N \cdot K^\alpha)$ time (assuming availability of a cheap matvec).

Next stop: Get some insight into *why* these matrices have low rank in the first place, to perhaps help improve our machinery even further.
Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness
 Local Expansions
 Multipole Expansions
 Rank Estimates
 Proxy Expansions

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs
Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Local Expansions

- Multipole Expansions
- Rank Estimates
- Proxy Expansions

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs
Punchline

What do (numerical) rank and smoothness have to do with each other?

Smoothness: well-approximated by Taylor.

If entire range of an operator has shortish Taylor expansions (i.e. repr. w.r.t. polynomials), that operator must be low rank.

Even shorter punchline?
Smoothing Operators

If the operations you are considering are smoothing, you can expect to get a lot of mileage out of low-rank machinery.

What types of operations are smoothing?

Now: Consider some examples of smoothness, with justification.

How do we judge smoothness?
Recap: Multivariate Taylor

10 Taylor: \[f(c + h) \approx \sum_{|\rho| = 0}^{k} \frac{f^{(\rho)}(c)}{\rho!} h^\rho \]

multi-index: \(\rho = (\rho_1, \ldots, \rho_n) \in \mathbb{N}_0^n \)

\[|\rho| = \rho_1 + \ldots + \rho_n \]

\[\rho! = \rho_1! \cdot \rho_2! \cdot \ldots \cdot \rho_n! \]

\[x^{\rho} = x_1^{\rho_1} \cdot x_2^{\rho_2} \cdot \ldots \cdot x_n^{\rho_n} \]

\[D^{\rho} f = \frac{\partial^{\rho} f}{\partial x_1^{\rho_1} \partial x_2^{\rho_2} \ldots \partial x_n^{\rho_n}} \]

\[f(c + h) \approx \sum_{|\rho| \leq k} \frac{D^{\rho} f(c)}{\rho!} h^\rho \]
Taylor and Error (I)

How can we estimate the error in a Taylor expansion?

If \(f \) is analytic,

\[
\left| f(c + h) - \sum_{p=0}^{k} \frac{f^{(p)}(c)}{p!} h^p \right| \leq \sum_{p=k+1}^{\infty} \frac{f^{(p)}(c)}{p!} h^p \]

(alternate reality: remainder terms, not here)
Taylor and Error (II)

Now suppose that we had an estimate that

$$\left| \frac{f^{(p)}(c)}{p!} h^p \right| \leq \alpha^p.$$