Aunomenorats

- HWI

Goals

- Error eshímateo for Jaylor of potantials
- unaltipoles
- Jowards fast al goritlaus

Devian $\quad N_{2} N$

- 10

- cheap "compressed forms"
- Taylor/smoothness for rank Findiy

Taylor and Error (II)
Now suppose that we had an estimate that $\left|\frac{f^{(p)}(c)}{p!} h^{p}\right| \leqslant \alpha^{p}$.

$$
\begin{aligned}
& \text { Assume: } \quad f(c+h)=\sum_{p=0}^{\infty} \frac{f^{(p)}(c)}{p!} L^{p} \\
& f(c+h)=\sum_{p=0}^{k} \frac{f^{(p)}(c)}{p!} h^{p}+\sum_{k=0}^{k=k+1} \sum^{p!}\left(\frac{1}{2}\right)^{k} f^{(p)}(c) \\
& \left|\rho(c+h)-\sum_{p=0}^{p} \frac{f^{(p)}(c)}{p!} h^{p}\right| \varepsilon \sum_{p=k+1}^{\infty} \alpha^{p}=\frac{1}{1-\alpha} \cdot \alpha^{k+1}
\end{aligned}
$$

Connect Taylor and Low Rank
Can Taylor help us establish low rank of an interaction?

$$
\begin{aligned}
f(c+h) & \approx \sum_{p=0}^{k} \frac{f^{(p)}(c)}{p!} h^{p} \\
& =\sum_{\rho-0}^{k} \text { cost }_{p} \text { basis }_{p}(x)
\end{aligned}
$$

\Rightarrow use this to establish low rank if smooth

Taylor on Potentials (I)
Compute a Taylor expansion of 2D Laplace point potential. $G(\vec{x}-\vec{y})=\operatorname{loy}$

$$
\frac{D^{\vec{p}} \psi(\overrightarrow{0})}{\vec{p}!} h^{p}
$$

snbgoalf: undurstand growth of those

$$
\begin{array}{ll}
|\vec{p}|=1: & (0,1) \quad(1,0) \\
|\vec{p}|=2: \quad(2,0) \quad(1,1)(0,2)
\end{array}
$$

Taylor on Potentials (la)

Why is it interesting to consider Taylor expansions of Laplace point potentials?

- pushers boundary of "smooth"
- import annul app

Taylor on Potentials (II)

Maxima 5.42.1 http://maxima.sourceforge.net
(\%i1) phi0: log(sqrt(y1**2 + y2**2));
(\%○1)

(\%i2) diff(phi0, y1);
(\%o2)

(\%i3) diff(phi0, y1, 5);
(\%o3)

(\%i4)

Taylor on Potentials (III)

Which of these is the most dangerous (largest) term?

Taylor on Potentials (IV)
What does this mean for the convergence of the Taylor series as a whole?

$$
\begin{aligned}
& |\underbrace{\frac{D^{P} \psi(0)}{\rho!}}_{\text {(2) }} h^{p}| \leq c_{\rho} \frac{1}{R^{0}} \ln \|^{p}=C_{p}(\underbrace{\frac{\|R\|}{R}}_{\chi_{\alpha}})^{\rho}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { if we ignore } \\
C_{p} \\
\text { init: }|\alpha|<1
\end{array} \\
& \vec{f}=\vec{c}+\vec{r} \\
& \alpha=\frac{\|\vec{h}\|}{R}<1
\end{aligned}
$$

Taylor on Potentials (V)

Taylor on Potentials (VI)
Generalize this to multiple source points:
Eros boule:
One she:
one yt: $\left(\frac{\dot{x}^{\prime} \vec{x}-\vec{c} \|_{2}}{\|\vec{y}-\vec{c}\|_{2}}\right)^{p+1}$

$$
\left(\frac{\max ;}{\min \cdot} \frac{\mid \vec{x}_{i}-\vec{c} \|_{2}}{\left\|\vec{y}_{j} \vec{c}\right\|_{2}}\right)^{p+1}-\left(\frac{\operatorname{dist}\left(\vec{c}_{1} \text { farthest fargut }\right)}{\operatorname{dist}(\vec{i}, \text { closest sonnce })}\right)^{p+1}
$$

Local expansions as a Computational Tool

Low rank makes evaluating interactions cheap(er). Do local expansions help with that goal?

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Rank and Smoothness
Local Expansions
Rank Estimates
Proxy Expansions

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Taylor on Potentials, Again
Stare at that Taylor formula again. (single sre, single tgl)
Cocali $\psi(\vec{x}-\vec{y}) \approx \sum_{|\vec{p}| \leqslant k} \frac{D^{\vec{p}} \psi(\vec{x}-\vec{y})| | \vec{x}=\vec{c}}{\vec{p}!} \underbrace{(x-c)^{\vec{p}}}_{\text {dop.on sre }} \underbrace{(\vec{y} \text { : src. }}_{\text {dep. on igt. }}$.tyk
Maltipole expn:

$$
\psi(\vec{x}-\vec{y}) \approx \sum_{|\vec{p}| \leqslant k} \frac{0^{\vec{p}} \psi(\vec{x}-\hat{y}) \mid \vec{y}=\vec{c}}{\vec{p}!} \underbrace{(\vec{y}-c)^{\vec{p}}}_{\text {dep on } \mid g h .} \underbrace{}_{\text {dep.0n } \delta \tau}
$$

Multipole Expansions (I)

At first sight, it doesn't look like much happened, but mathematically/geometrically, this is a very different animal. First Q: When does this expansion converge?

