

Taylor on Potentials, Again

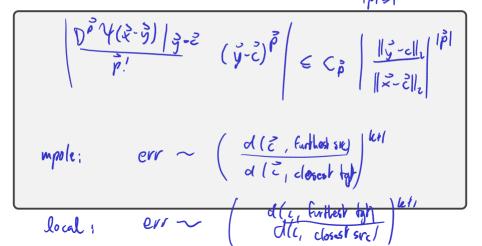
Stare at that Taylor formula again.

Docel:
$$(\vec{x}, \vec{y}) \ge \sum_{\substack{|\vec{p}| \leq k}} \frac{D^{\vec{p}} \cdot \psi(\vec{x}, \vec{y})}{\vec{p}!} |\vec{x} = \tilde{c} \quad (\vec{x}, \vec{c})^{\vec{p}}$$

 $d_{op} \cdot \sigma \Rightarrow r.$ $d_{op} \cdot \sigma \Rightarrow r.$ $d_{op} \cdot \sigma h \cdot hgt.$
In pole:
 $\psi(\vec{x}, \vec{y}) \ge \sum_{\substack{|\vec{p}| \leq k}} \frac{D^{\vec{p}} \cdot \psi(\vec{x}, \vec{y})}{\vec{p}!} |\vec{y} = \tilde{c} \quad (\vec{y}, \vec{c})^{\vec{p}}$
 $d_{op} \cdot \sigma hgt.$ $d_{op} \cdot \sigma hgt.$

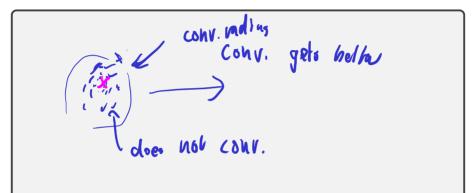
Multipole Expansions (I)

At first sight, it doesn't look like much happened, but mathematically/geometrically, this is a very different animal. First Q: When does this expansion converge?



Multipole Expansions (II)

The abstract idea of a *multipole expansion* is that:



Multipole Expansions (III)

If our particle distribution is like in the figure: is a multipole expansion is a computationally useful thing?

Set

- ► S =#sources,
- ► T = #targets,
- K = #terms in expansion.

For mpole;
$$O(KS)$$
 if $K-O(I)$
eval impole: $O(KT)$

Demo: Multipole/local expansions

 $\frac{1}{4} \Psi(\ddot{x} - \frac{h}{2} \vec{e}_x) + \frac{1}{4} (-1) \Psi(x + \frac{h}{2} \vec{e}_x)$ $= \underline{\uparrow} \partial_{x} \underbrace{\checkmark} (\overline{x})$

lin h-70

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Multipole Expansions Rank Estimates Proxy Expansions

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

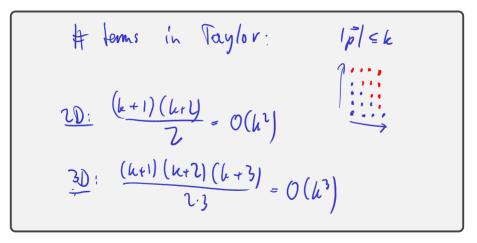
Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

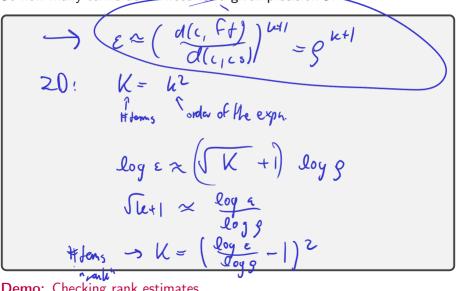
Taylor on Potentials: Low Rank?

Connect this to the numerical rank observations:



On Rank Estimates

So how many terms do we need for a given precision ε ?



Our rank estimate was off by a power of log ε . What gives?

