Annonnements.

HW Z > due in Zweeks HWI due tomonor

Goals:

- compute num, vont w. error estimates From tinglor - altern atives to Tinglor - c'exponsions' using LA

Review Local, y Err ~ (d(c, E. target)) k+1 Mpoles Mpoles $\overline{Err} = \begin{pmatrix} d(c_1, \overline{F}, source) \\ d(r_1, c_1) \\ \overline{D} \\ \overline$ $#+orms = O(k^d)$ (0,0) 5 · · · (2,0)

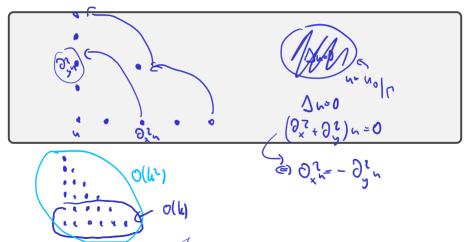
On Rank Estimates

So how many terms do we need for a given precision ε ?

$$\mathcal{E} = \left(\frac{d(c_{1}, f, d_{angul})}{d(c_{1}, c_{2}, source})\right)^{k+1} = g^{k+1}$$

$$\frac{d(c_{1}, c_{2}, source)}{d(c_{1}, c_{2}, source)} = g^{k+1}$$

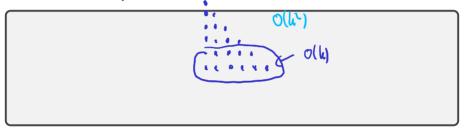
$$\frac{d(c_{1}, c_{2}, source)}{d(c_{2}, c_{2}, source)} = g^{k+1}$$


$$\frac{d(c_{1}, c_{2}, source)}{d(c_{2}, c_{2}, source)} = g^{k+1}$$

$$\frac{d(c_{1}, c_{2}, source)}{d(c_{1}, c_{2}, s$$

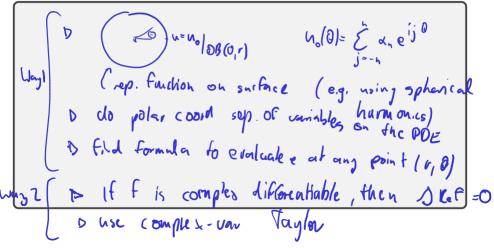
Demo: Checking rank estimates

Estimated vs Actual Rank


Our rank estimate was off by a power of log ε . What gives?

84

Taylor and PDEs


Look at $\partial_x^2 G$ and $\partial_y^2 G$ in the multipole demo again. Notice anything?

Being Clever about Expansions

SULKE 450

How could one be clever about expansions? (i.e. give examples)

Expansions for Helmholtz

How do expansions for other PDEs arise?

DLMF 10.23.6 shows 'Graf's addition theorem':

where
$$\theta = \angle (x - c)$$
 and $\theta' = \angle (x' - c)$.

Can apply same family of tricks as with Taylor to derive multipole/local expansions.

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

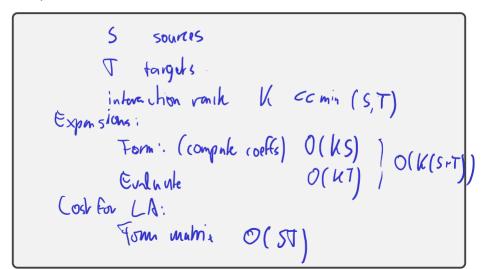
Rank and Smoothness Local Expansions Multipole Expansions Rank Estimates Proxy Expansions

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

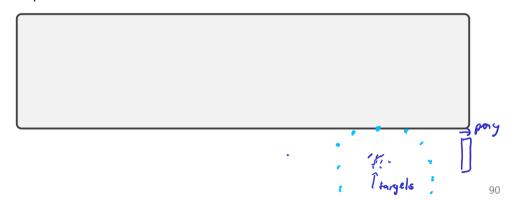

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Making Multipole/Local Expansions using Linear Algebra Actual expansions cheaper than LA approaches. Can this be fixed? Compare costs for this situation:



The Proxy Trick

Idea: Skeletonization using Proxies

Q: What error do we expect from the proxy-based multipole/local 'expansions'?

Why Does the Proxy Trick Work?

In particular, how general is this? Does this work for any kernel?