Annonncemarts.

Goals,

Review

$$
\text { "basis" : exponsion } \rightarrow \text { targ's }
$$

$$
\text { "coofficients": sources } \rightarrow \text { expansian }
$$

$$
P \square=
$$

$A(x, y)$: interaction mat

$$
\begin{aligned}
& P A(\text { skel, sre }) \approx A(\text { tgh,src }) \\
& \rightarrow \hat{A(\text { skel }, \text { sur) }) \vec{\sigma}} \approx A(\text { dgt,src) } \stackrel{\rightharpoonup}{\sigma}
\end{aligned}
$$

Pixies that lead to bad results:

- too close? increases the rank of Alskel, ra

- not cover ing the splore?
- too for ! \rightarrow Ole in Plaid "Cliff hanger \rightarrow "targets too similar" in FD,
- too Fer?, \rightarrow limits representable i, rale
- too may? \rightarrow costly

Where are we now? (I)

Summarize what we know about interaction ranks.

- We know that far interactions with a smooth kernel have low rank. (Because: short Taylor expansion suffices)
- If

$$
\psi(\boldsymbol{x})=\sum_{j} G\left(\boldsymbol{x}, \boldsymbol{y}_{j}\right) \varphi\left(\boldsymbol{y}_{j}\right)
$$

satisfies a PDE (e.g. Laplace), i.e. if $G\left(\boldsymbol{x}, \boldsymbol{y}_{j}\right)$ satisfies a PDE, then that low rank is even lower.

- Can construct interior ('local') and exterior ('multipole') expansions (using Taylor or other tools).
- Can lower the number of terms using the PDE.
- Can construct LinAlg-workalikes for interior ('local') and exterior ('multipole') expansions.
- Can make those cheap using proxy points.

Where are we now? (II)

So we can compute interactions where sources are distant from targets (i.e. where the interaction is low rank) quite quickly.
Problem: In general, that's not the situation that we're in.

But: Most of the targets are far away from most of the sources.
(\Leftrightarrow Only a few sources are close to a chosen 'close-knit' group of targets.)
So maybe we can do business yet-we just need to split out the near interactions to get a hold of the far ones (which (a) constitute the bulk of the work and (b) can be made cheap as we saw.)

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions
Ewald Summation
Barnes-Hut
Fast Mutipole
Direct Solvers
The Butterfly Factorization

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Rank and Smoothness

Near and Far: Separating out High-Rank Interactions
Ewald Summation
Barnes-Hut
Fast Mutipole
Direct Solvers
The Butterfly Factorization

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems
Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Preliminaries: Convolution

$$
\begin{array}{r}
{ }^{\eta} K^{"} \quad " \sigma^{n} \\
(f * g)(x)=\int_{\mathbb{R}} f(x)(\xi \cdot \xi) g(*-\xi) d \xi .
\end{array}
$$

- Convolution with shifted δ is the same as shifting the function;

$$
[f *(\xi \mapsto \delta(\xi-a))](x)=f(x-a)
$$

- Convolution is linear (in both arguments) and commutative.

$$
\int_{0}^{1} f(x) \delta(x-0.5) d x=f(0.5)
$$

Preliminaries: Fourier Transform

$$
\underbrace{\mathcal{F}(f)}(\omega)=\int_{\mathbb{R}} f(x) e^{-2 \pi i \omega x} d x
$$

- Convolution turns into multiplication: $\mathcal{F}\{f * g\}=\mathcal{F} f \cdot \mathcal{F} g$,
- A single δ turns into: $\mathcal{F}\{\delta(x-a)\}(\omega)=e^{-i a \omega}$
- And a "train" of δ s turns

$$
\mathcal{F}\left\{\sum_{\ell \in \mathbb{Z}} \delta(x-\ell)\right\}(\omega)=\sum_{k \in \mathbb{Z}} \delta(\omega-2 \pi k) \cdot \mathcal{C}
$$

What is $\mathcal{F}\{f(x-a)\} ? \quad x \rightarrow \mathcal{P}(x-a)=(\delta(x-a)) * f$

Simple and Periodic: Ewald Summation

Want to evaluate potential from an infinite periodic grid of sources:

$$
\left.\psi(\boldsymbol{x})=\sum_{\boldsymbol{m} \in \mathbb{Z}^{d}} \sum_{j=1}^{\alpha_{s \in}} G\left(\boldsymbol{x}, \boldsymbol{y}_{j}\right)+\boldsymbol{m} \varphi\left(\boldsymbol{y}_{j}\right)\right)
$$

$$
\mathbb{Z}=\{\quad . \quad-2,-1,0,
$$

Lattice Sums: Convergence
Q: When does this have a right to converge?

$$
\begin{aligned}
& \psi(\vec{O})=\sum_{i=0}^{\infty} \sum_{\text {cells edit }[i ;-1)} O\left(i^{-p}\right) \\
&=\sum_{i=0}^{\infty} O\left(i^{d-1}\right) O\left(i^{-p}\right)=\sum_{i=0}^{\infty} O\left(\left.i\right|^{d-1}\right) \\
& d-1-p<-1 \Leftrightarrow p>d
\end{aligned}
$$

Ewald Summation: Dealing with Smoothness

$$
\psi(x)=\sum_{i \in \mathbb{Z}^{d}} \sum_{j=1}^{N_{s c c}} G\left(x-\left(y_{j}+i\right) \mid \varphi\left(y_{j}\right)\right.
$$

Clear: a discrete convolution. Would like to make use of the fact that the Fourier transform turns convolutions into products. How?

$$
\text { Issue : } \quad G \text { is non-smooM. }
$$

Ewald Summation: Screens

For examples

$$
G(\bar{x})=\frac{\sigma(x) G(x)}{G_{(R}}+\frac{(y-\sigma(x)) G(x)}{G_{x}}
$$

$$
\begin{aligned}
& \frac{1}{\|x\|_{2}^{4}}-G(\hat{x})=\sigma(\vec{x}) \frac{1}{\|\vec{x}\|_{2}^{4}}+\left((1-\sigma(\vec{x})) \frac{1}{\|\vec{x}\|_{2}^{4}}\right. \\
& \theta(x) \in[0,] \\
& \left.\partial(k)=O(\| k)_{2}^{4}\right) \quad(\vec{x} \rightarrow 0) \\
& (1-\delta) \text { has bonded suppose. } \\
& \delta(\vec{x})=1 \text { if }\|x\|_{2} \geq R
\end{aligned}
$$

Ewald Summation: Field Splitting

We can split the computation (from the perspective of a unit cell target) as follows:

Ewald Summation: Summation (1D for simplicity) Interesting bit: How to sum $G_{\text {LR }}$.

$$
\begin{aligned}
& \mathcal{F}\{\psi\}-\mathcal{F}\left\{\psi_{s h}\right\}=F\left\{\psi_{c}\right\} \\
& =f\left\{G_{\Omega}\right\} \quad f\left\{x \mapsto \sum_{N_{n=1}} \sum_{j=1}^{N_{n+1}} \delta\left(x-y_{j}-m\right)\right) \\
& =\mathcal{F}\left\{\sigma_{c n}\right\} \cdot \sum_{j=1}^{N_{k c}} e^{-i y_{j} \omega} \cdot J\left\{\sum_{m \in Z} \delta(x-m)\right\} \\
& ==j\left\{\sigma_{c k}\right\}(\omega) \cdot \sum_{j=1}^{N_{n k c}} e^{-i y_{i} \omega} \cdot\left(\omega \mapsto \sum_{n \in Z} \delta(\omega-2 \pi n)\right)
\end{aligned}
$$

Ewald Summation: Remarks

In practice: Fourier transforms carried out discretely, using FFT.

- Additional error contributions from interpolation (small if screen smooth enough to be well-sampled by mesh)
- $O(N \log N)$ cost (from FFT)
- Need to choose evaluation grid ('mesh')
- Resulting method called Particle-Mesh-Ewald ('PME')

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Ewald Summation

Barnes-Hut

Fast Mutipole
Direct Solvers
The Butterfly Factorization

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems
Back from Infinity: Discretization
Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)

Barnes-Hut: The Task At Hand
Want: All-pairs interaction.
Caution:

Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)

Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)

Barnes-Hut: Box Targets

For sake of discussion, choose one 'box' as targets.
Q: For which boxes can we then use multipole expansions?

Barnes-Hut: Putting Multipole Expansions to Work

complexity?
(Figure following G. Martinsson)

Barnes-Hut: Accuracy

With this computational outline, what's the accuracy?
\square
Q: Does this get better or worse as dimension increases?

