A 1 n:

- no video of Tne cluss (sorry)
- filled -oul demos available (expand, "run interactirel",

Goals:

- BH/FMM

Revías:

- Evold sumation

Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)

Barnes-Hut: The Task At Hand
Want: All-pairs interaction.
Caution:

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{u}=A \vec{q} \\
& A_{i j}=\log \left(\left\|x_{i}-x_{j}\right\|_{2}\right) \\
& A_{i i}=0
\end{aligned}
$$

Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)

Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)

Barnes-Hut: Box Targets

For sake of discussion, choose one 'box' as targets.
Q: For which boxes can we then use multipole expansions?
dep. on accorncy

Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)

box radius

$$
\begin{aligned}
& d(c, f, s .)=\sqrt{2} r \\
& d(c, c . t .)=3 r
\end{aligned}
$$

Barnes-Hut: Accuracy
With this computational outline, what's the accuracy?

$$
\frac{d(c, f . s .)}{d(c, c . t .)}
$$

$$
\begin{aligned}
\varepsilon & \subseteq\left(\frac{d(c, f . s .)}{d(c, c \cdot f .)}\right)^{k+1} \\
& \leq\left(\frac{\sqrt{2} x}{3 x}\right)^{k+1}
\end{aligned}
$$

Obs 1: expat order gives accuracy

$$
06=2_{i} \quad n 0:\left(\frac{\sqrt{d}}{3}\right)^{k+P}
$$

Q: Does this get better or worse as dimension increases?

Barnes-Hut (Single-Level): Computational Cost
What's the cost of this algorithm?
$N=\#$ particles
$K=$ \#terms in an expansion
$m=$ \# particles in a box
(1)
(2) Evaliupodes
(3) 9, lose boxes

$$
\text { Pick } \quad n=\sqrt{N}
$$

Barnes-Hut Single Level Cost: Observations

$$
\cos 1 \sim O\left(N^{3 / 2}\right) \text { betta } \ln O\left(N^{2}\right)
$$

Toreduce coot of Step 2: tree of boxes

Box Splitting

(Figure following G. Martinsson)

Level Count

How many levels?
Until \# particles in leaf tox is $O(1)$

(Figure following G. Martinsson)
Want to evaluate all the source interactions with the targets in the box.
Q: What would be good sizes for source boxes? What's the requirement?

Multipole Sources

Data from which of these boxes could we bring in using multipole expansions? Does that depend on the type of expansion? (Taylor/special function vs skeletons)

Barnes-Hut: Box Properties

What properties do these boxes have?
Simple observation: The further, the bigger.

Barnes-Hut: Box Properties

r_{s}, sowze box radins
r_{t} : targel box radius
R : d (source bod conter, target box centes)

$$
\left(\frac{d(\text { sonne c, f.s. } 1}{d(\text { sownce c, c. } d)}\right)^{k+1} \leq\left(\frac{r_{6} \sqrt{2}}{n-r_{t}}\right)^{n+1}
$$

Toward. MAC ("multipole aceptance criterion")

Barnes-Hut: Well-separated-ness
Which boxes in the tree should be allowed to contribute via multipole?

Converpent iff $r_{s} \sqrt{2}<R-r_{t} \quad$ (*)
convegrent if $R \geqslant 3 \max \left(r_{+}, r_{s}\right) \quad\left(r_{*}\right)$

$$
\begin{gathered}
(*) \Leftrightarrow \quad\left(r_{t}+\sqrt{2} r_{s}\right)<R \\
(* *) \Rightarrow(*)
\end{gathered}
$$

(**) as MAC : "well-separated"

Barnes-Hut: Revised Cost Estimate

Which of these boxes are well-separated from one another?

What is the cost of evaluating the target potentials, assuming that we know the multipole expansions already?

Barnes-Hut: Revised Cost Estimate

