Amoncounts:

- hwz due Wed nightr
- back in pason on Thn

Goals:

- costr of BH
- cosl of mpde cual.
- avoid redmdanl mpole fomution
- redice cot mpodecual $\rightarrow F M M$

Reviou:
BH, accuracy

Barnes-Hut: Box Properties

What properties do these boxes have?
Simple observation: The further, the bigger.

Barnes-Hut: Box Properties
r_{s} : soune box vadius
r_{1} : taggel box radins
Ω : distonce betwen centers
d: \# dimensions

$$
\begin{aligned}
& \left(\frac{d(c, f . s)}{d(c, c \cdot t)}\right)^{k_{t} 1} \\
& \leqslant\left(\frac{r_{s} \sqrt{d}}{\Omega-r_{t}}\right)^{k+1}
\end{aligned}
$$

Barnes-Hut: Well-separated-ness
Which boxes in the tree should be allowed to contribute via multipole?
consengul \mathbb{f} : $\quad \sqrt{2} r_{s}<\pi-r_{4}$
well-spp:

$$
n \geq 3 \max \left(v_{s} r_{t}\right)
$$

$(*) \Leftrightarrow\left(v_{t}+\sqrt{2} v_{s}\right) \subset \Omega$

MAC

Barnes-Hut: Revised Cost Estimate
Which of these boxes are well-separated from one another?

What is the cost of evaluating the target potentials, assuming that we know the multipole expansions already?

Barnes-Hut: Revised Cost Estimate

- L: \# levies
- N: \# particles
- K! \# terms in an exponsiur
- m: \# particles (box $=O(1)$
- ${ }^{\prime} \Rightarrow^{n} L=O(\log (N))$
die f (- For new interactions: consider sum of number of evan ($\begin{gathered}\text { That: neighbors across all boxes "avery" } \leq g \cdot m=d \text { boxes } \\ \text { ne }\end{gathered}$
mol ($\begin{gathered}\text { For end level tree, there arr } \\ \text { of well- sop. boxes :C }\end{gathered}$
eva evalcos): $C \cdot L \cdot K=C \cdot K \cdot \log (N)$ per targe(bor.

Barnes-Hut: Next Revised Cost Estimate

	-	-	-	\cdots	\bigcirc	\cdots	-
-	, ${ }^{\circ}$	\therefore	\bigcirc	-	$\therefore 0^{3}$	0	\because
-	-	\bigcirc	- is	-	\cdots	0	\bigcirc
-	, 6	O			-	-	-
				\sim			
3	\bigcirc	-	z			\%	
\cdots	-	- 2	-		-	-	- :
0	$\because{ }^{*}$	-			\therefore	\bigcirc	\cdots

(Figure following G. Martinsson)
Summarize the algorithm (so far) and the associated cost.

Barnes-Hut: Next Revised Cost Estimate
Summarize the algorithm (so far) and the associated cost.

Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)
How could this process be sped up?

Barnes-Hut: Clumps of Boxes?

Observation: The amount of work does not really decrease as we go up the tree: Fewer boxes, but more particles in each of them. But we already compute multipoles to summarize lower-level boxes...

Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)
To get a new 'big' multipole from a 'small' multipole, we need a new mathematical tool.

$$
\left(\frac{d(c, f, s)}{d(c, c, p)}\right)<1
$$

Barnes-Hut: Translations

Queshors:

- How do you do it?
- What's the convergence behavior?
- What evroor do you introduce?
- What's the cosh?

$$
\rightarrow H W
$$

Bonding the cost for a translation?

Cost of Multi-Level Barnes-Hut
Compute mpoles:

Level	what	Cost	How mamy
L	sNe \rightarrow mpoles	$m K$	(N / m)
$C-1$	mpole \rightarrow mpole	K^{2}	$(N / m) / 4$
$C-2$	mpole \rightarrow mpole	K^{2}	$(N / m) / 16$
\vdots	\vdots		\vdots
0	mpole \rightarrow mpole	K^{2}	
$O K N)$	$+O\left(K^{2} N\right)$		
	$=O(N)$		

Cost of Multi-Level Barnes-Hut: Observations

Observation: Multipole evaluation remains as the single most costly bit of this algorithm. Fix?

Idea: Exploit the tree structure also in performing this step. If 'upward' translation of multipoles helped earlier, maybe 'downward' translation of local expansions can help now.

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Rank and Smoothness

Near and Far: Separating out High-Rank Interactions
Ewald Summation
Fast Mutipole
Direct Solvers
The Butterfly Factorization
Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems
Back from Infinity: Discretization
Computing Integrals: Approaches to Quadrature
Going General: More PDEs

Using Multipole-to-Local

Come up with an algorithm that computes the interaction in the figure.

Using Multipole-to-Local

Come up with an algorithm that computes the interaction in the figure.
\square

