Anni	Doview
D Hwr deadline ext.	P Barnes-Huh
FrQ noon	• O(Nlog N)
d HWS	· compute mpoles · VI · start for a lite
Goals;	SO(NeogN)
▷ ∓MM (M2L, L2L)	· only form for leaves
D Solve G [Lemphile salves]	K eval mpoles
is Direct?	eval direct interactions
· · · · · · · · · · · · · · · · · · ·	K K I I TOM HEIGH BOV (

Using Multipole-to-Local

LO

Come up with an algorithm that computes the interaction in the figure.

Using Multipole-to-Local

Come up with an algorithm that computes the interaction in the figure.

p Form hultipoles
D translate impole to local
D ? eval local directly (s dou't wont
Instead i reuse alread dy comprised local

Using Multipole-to-Local: Next Level

(Figure following G. Martinsson)

Assuming we retain information from the previous level, how can we obtain a valid local expansion on the target box?

Using Multipole-to-Local: Next Level

Assuming we retain information from the previous level, how can we obtain a valid local expansion on the target box?

Define 'Interaction List'

For a box b, the interaction list I_b consists of all boxes b' so that

The Fast Multipole Method ('FMM')

Upward pass

- 1. Build tree
- 2. Compute interaction lists
- 3. Compute lowest-level multipoles from sources
- 4. Loop over levels $\ell = L 1, \dots, 2$:
 - 4.1 Compute multipoles at level ℓ by mp \rightarrow mp

Overall algorithm: Now O(N) complexity.

Note: L levels, numbered $0, \ldots, L-1$. Loop indices above *inclusive*.

Downward pass

- 1. Loop over levels $\ell = 2, 3, \dots, L-1$:
 - 1.1 Loop over boxes b on level ℓ :

1.1.1 Add contrib from I_b to local expansion by mp \rightarrow loc 1.1.2 Add contrib from parent to local exp by loc \rightarrow loc

Evaluate local expansion and direct contrib from 9 neighbors.

What about adaptivity?

1 : neur neighbors Z: mZR

Figure credit: Carrier et al. ('88)

What about adaptivity?

Figure credit: Carrier et al. ('88)

What about adaptivity?

		2	2	2	2	
4		1	1	1	2	0
2	2	1	ь			-
2	2	3 3 1 3 3 3 - 3 -	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	1 5		
4						
		2	2			
5 5				•		

Figure credit: Carrier et al. ('88)