

Neviny:

Define 'Interaction List'

target

For a box b, the interaction list I_b consists of all boxes b' so that

b and b' are on some level
b and b' are nell-separated
paionts of b and b' toud

"we can pick up (b)'s multipole via M2L"

(non -adaphire)

Upward pass

- 1. Build tree 🗸
- 2. Compute interaction lists
- Compute lowest-level multipoles from sources
- 4. Loop over levels $\ell = L 1, \dots, 2$:
 - 4.1 Compute multipoles at level ℓ by mp \rightarrow mp

Downward pass

1. Loop over levels $\ell = 2, 3, \dots, L-1$:

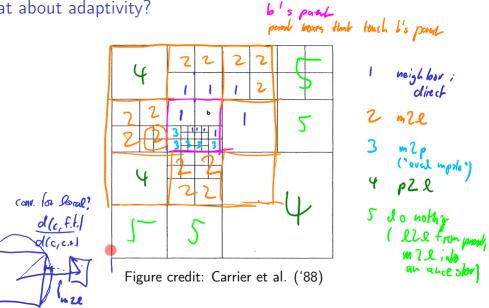
1.1 Loop over boxes b on level ℓ : 1.1.1 Add contrib from T_b to local expansion by mp \rightarrow loc 1.1.2 Add contrib from parent to local exp by loc \rightarrow loc

2. Evaluate local expansion and direct contrib from 9 neighbors.

Overall algorithm: Now O(N) complexity.

Note: L levels, numbered $0, \ldots, L-1$. Loop indices above *inclusive*.

What about adaptivity?



What about adaptivity?

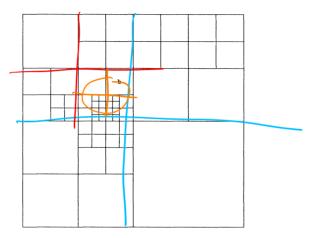


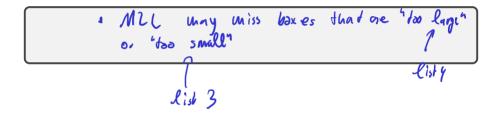
Figure credit: Carrier et al. ('88)

What about adaptivity?

4		2	2	2	2	
4		1	1	1	2	5
2	2	1	ь			-
2	2	3	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	1		5
4		2	2			
		2	2			
5		5				
		3				

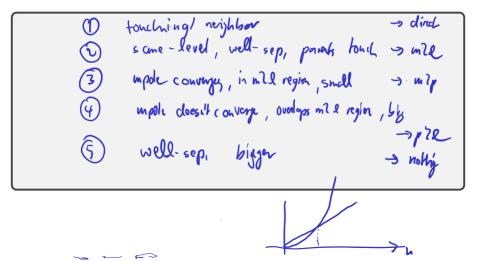
Figure credit: Carrier et al. ('88)

Adaptivity: what changes?



FMM: List of Interaction Lists

Make a list of cases:



142

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Ewald Summation Barnes-Hut Fast Mutipole **Direct Solvers** The Butterfly Factorization

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

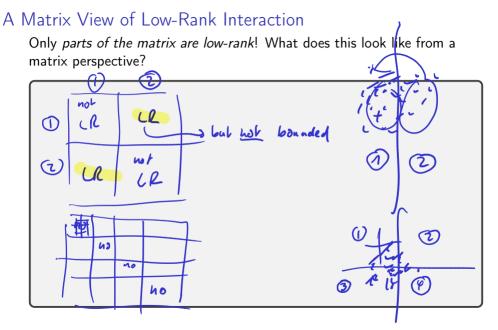
Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

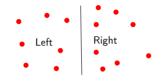
Going General: More PDEs

What about solving?

Likely computational goal: Solve a linear system Ax = b. How do our methods help with that?



(Recursive) Coordinate Bisection (RCB)



Block-separable matrices

$$A = \begin{bmatrix} D_1 & A_{12} & A_{13} & A_{14} \\ A_{21} & D_2 & A_{23} & A_{24} \\ A_{31} & A_{32} & D_3 & A_{34} \\ A_{41} & A_{42} & A_{43} & D_4 \end{bmatrix}$$

where A_{ij} has low rank: How to capture rank structure?

Saw: If *A* comes from a kernel for which Green's formula holds, then the same skeleton will work for all of space, for a given set of sources/targets. What would the resulting matrix look like?