Ann
Neviers：
Bhut：（ $\left.{ }^{n} V_{2}{ }^{n}\right)$
－form mpole ：O_{n} ）
－eval mpole：$O(n \log n)$
－$n=\#$ pantiles
FMM：
－Form／upuand passe＂
－eval／＂dowhward pass＂：
－＂M2L＂，＂してし＂

© Butlently tronstom

Define 'Interaction List'
target
For a box b, the interaction list l_{b} consists of all boxes b^{\prime} so that

- b and b^{\prime} are on sane level
- b and b^{\prime} are well-separatea
- paionts of b and b^{\prime} toad
"we can pick np $\left(b^{\prime}\right)^{\prime} s$ mulhipole via $M L^{n}$

The Fast Multipole Method ('FMM') (non -aduph've)

Upward pass

1. Build tree
2. Compute interaction lists
3. Compute lowest-level multipoles from sources
4. Loop over levels $\ell=L-1, \ldots, 2$:
4.1 Compute multipoles at level ℓ by $\mathrm{mp} \rightarrow \mathrm{mp}$

Downward pass

1. Loop over levels $\ell=2,3, \ldots, L-1$:
1.1 Loop over boxes b on level ℓ :
1.1.1 Add contrib fron T_{b} yo local expansion by $\mathrm{mp} \rightarrow \mathrm{loc}$
1.1. Add contrib from parent to local exp by loc \rightarrow loc
2. Evaluate locat expansion and direct contrib from 9 neighbors.

Overall algorithm: Now $O(N)$ complexity.
Note: L levels, numbered $0, \ldots, L-1$. Loop indices above inclusive.

What about adaptivity?
6's paral
paoal toxies that towch b's porite

Figure credit: Carrier et al. ('88)

1 neighbos; direct

2 mie
3 m 2 p ("eval mpolle")
4 p 2 l
5 do nothy (elze from pardis) mil into an ancestor?

What about adaptivity?

Figure credit: Carrier et al. ('88)

What about adaptivity?

Figure credit: Carrier et al. ('88)

Adaptivity: what changes?

FMM: List of Interaction Lists

Make a list of cases:

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Rank and Smoothness

Near and Far: Separating out High-Rank Interactions
Ewald Summation
Barnes-Hut
Fast Mutipole
Direct Solvers
The Butterfly Factorization

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems
Back from Infinity: Discretization
Computing Integrals: Approaches to Quadrature

Going General: More PDEs

What about solving?

Likely computational goal: Solve a linear system $A x=b$. How do our methods help with that?

- iterative + FNM
- dike

A Matrix View of Low-Rank Interaction
Only parts of the matrix are low-rank! What does this look like from a matrix perspective?

(Recursive) Coordinate Bisection (RCB)

Block-separable matrices

$$
A=\left[\begin{array}{cccc}
D_{1} & A_{12} & A_{13} & A_{14} \\
A_{21} & D_{2} & A_{23} & A_{24} \\
A_{31} & A_{32} & D_{3} & A_{34} \\
A_{41} & A_{42} & A_{43} & D_{4}
\end{array}\right]
$$

where $A_{i j}$ has low rank: How to capture rank structure?

Proxy Recap

Saw: If A comes from a kernel for which Green's formula holds, then the same skeleton will work for all of space, for a given set of sources/targets. What would the resulting matrix look like?

