Ann:
Review:

Goals:

- Direct solve DSS mari \rightarrow HBSS mat.
- Butter fly
- PDE solvers / compact op.. theory
(Recursive) Coordinate Bisection (RCB)

Block-separable matrices
Particles:

$$
A=\overbrace{\left[\begin{array}{llll}
D_{1} & A_{12} & A_{13} & A_{14} \\
A_{21} & D_{2} & A_{23} & A_{24} \\
A_{31} & A_{32} & D_{3} & A_{34} \\
A_{41} & A_{42} & A_{43} & D_{4}
\end{array}\right]}^{n} \quad D_{i} \quad{ }^{f_{i}}: \quad \text { full } \quad \text { rank } \quad A_{i j}=A_{j i}^{\top}
$$

where $A_{i j}$ has low rank: How to capture rank structure?

$$
A_{i j} \approx \hat{\jmath}_{0(n)}^{P_{i}} \underbrace{\left(A_{i j}\right)_{I_{i},}}_{\widetilde{A_{i j}}} \prod_{O(n)}
$$

Ophimishically: $\quad K \times K$
K: off-dlug into action ratlike

Proxy Recap

Saw: If A comes from a kernel for which Green's formula holds, then the same skeleton will work for all of space, for a given set of sources/targets. What would the resulting matrix look like?

Rank and Proxies

Unlike FMMs, partitions here do not include "buffer" zones of near elements. What are the consequences?

Idea:

- Add extra proxies from nearby particle groups
- Tolerate the increased rail,

Block-Separable Matrices

A block-separable matrix looks like this:

$$
A \approx\left[\begin{array}{cccc}
D_{1} & P_{1} \tilde{A}_{12} \Pi_{2} & P_{1} \tilde{A}_{13} \Pi_{3} & P_{1} \tilde{A}_{11} \Pi_{4} \\
P_{2} \tilde{A}_{21} \Pi_{1} & D_{2} & P_{2} \tilde{A}_{23} \Pi_{3} & P_{2} \tilde{A}_{24} \Pi_{4} \\
P_{3} \tilde{A}_{31} \Pi_{1} & P_{3} \tilde{A}_{32} \Pi_{2} & D_{3} & P_{3} \tilde{A}_{34} \Pi_{4} \\
P_{4} \tilde{A}_{41} \Pi_{1} & P_{4} \tilde{A}_{42} \Pi_{2} & P_{4} \tilde{A}_{43} \Pi_{3} & D_{4}
\end{array}\right] \quad C=\left(\begin{array}{c}
0 \tilde{A}_{12} \\
\tilde{A}_{4} \cdots \\
\vdots \\
0
\end{array}\right)
$$

For matres: $D_{x}{ }_{x}+P V_{N K} C_{V k^{2}} \prod_{k \times N}+{ }^{2}$

- D_{i} has full rank (not necessarily diagonal)
- P_{i} shared for entire row
- Π_{i} shared for entire column

Block-Separable Matrix: Questions
Q: Why is it called that?

Q: How expensive is a matvec?

$$
\begin{aligned}
& O\left(N^{3 / 2}\right) \text { by analogy to single-level } \\
& \text { Bames-tht. } \\
& \text { Q: How about a solve? } \\
& \text { assuming: SN particles in a box/groays. }
\end{aligned}
$$

BSS Solve (I)

Separate out 'coarse' unknowns. Use the following notation:

$$
B=\left[\begin{array}{cccc}
0 & P_{1} \tilde{A}_{12} & P_{1} \tilde{A}_{13} & P_{1} \tilde{A}_{14} \\
P_{2} \tilde{A}_{21} & 0 & P_{2} \tilde{A}_{23} & P_{2} \tilde{A}_{24} \\
P_{3} \tilde{A}_{31} & P_{3} \tilde{A}_{32} & 0 & P_{3} \tilde{A}_{34} \\
P_{4} \tilde{A}_{41} & P_{4} \tilde{A}_{42} & P_{4} \tilde{A}_{43} & 0
\end{array}\right] \quad A_{x} \quad \vec{b}
$$

and

$$
D=\left[\begin{array}{llll}
D_{1} & & & \\
& D_{2} & & \\
& & D_{3} & \\
& & & D_{4}
\end{array}\right], \quad \Pi=\left[\begin{array}{llll}
\Pi_{1} & & & \\
& \Pi_{2} & & \\
& & \Pi_{3} & \\
& & & \Pi_{4}
\end{array}\right] .
$$

$$
\begin{aligned}
& A=D+B \pi
\end{aligned}
$$

BSS Solve (II)

Q: What are the matrix sizes? The vector lengths of \boldsymbol{x} and $\tilde{\boldsymbol{x}}$?

Now work towards doing just a 'coarse' solve on $\tilde{\boldsymbol{x}}$, using the Schur complement:

$$
\begin{aligned}
& \left.\left.\left(\begin{array}{cc}
D & B \\
-\pi & 1 d
\end{array}\right)\binom{\vec{x}}{\tilde{x}}=\binom{b}{\overrightarrow{0}} \xrightarrow[\omega]{\left(\pi D^{-1}\right) \cdot \sim\left(\Pi D^{-1} D\right.} \Pi D^{-1} B \right\rvert\, \Pi D^{-1} B\right) \\
& \text { (0 } \\
& \left(d+\pi D^{-1} B\right)\left(\begin{array}{l}
\partial \\
x \\
\dot{x}
\end{array}\right)=\left(\pi D^{-1} b\right) \\
& \left(1 d+\pi D^{-1} B\right) \tilde{x}=\pi D^{-1} B
\end{aligned}
$$

BSS Solve (III)

Focus in on the second row:

$$
\text { * } \quad\left(\mathrm{Id}+\Pi D^{-1} B\right) \widetilde{\boldsymbol{x}}=\Pi D^{-1} \boldsymbol{b} \quad \leftharpoonup
$$

Every non-zero (i.e. off-diagonal) entry in $\Pi D^{-1} B$ looks like

$$
\underbrace{\Pi_{i} D_{i}^{-1} P_{i} \hat{A}_{i j}}
$$

Define a diagonal entry:

$$
\tilde{A}_{i i}=\left(\Pi_{i} D_{i}^{-1} P_{i}\right)^{-1}
$$

Idea: Hit \otimes From left with block-diag; $\left(\tilde{A}_{i i}\right)$

BSS Solve (IV)
Next, left-multiply $\left(\operatorname{Id}+\Pi D^{-1} B\right)$ by block-diag ${ }_{i}\left(\tilde{A}_{i j}\right)$:

BSS Solve: Summary

What have we achieved?

- Instead of solving a linear system of size

$$
\left(N_{L 0 \text { boxes }} \cdot m\right) \times\left(N_{L 0 \text { boxes }} \cdot m\right)
$$

we solve a linear system of size

$$
\left(N_{L O \text { boxes }} \cdot K\right) \times\left(N_{L O \text { boxes }} \cdot K\right),
$$

which is cheaper by a factor of $(\mathrm{K} / \mathrm{m})^{3}$.

- We are now only solving on the skeletons.

(Figure following G. Martinsson, drawn by A. Fill)

Hierarchically Block-Separable

To get to $O(N)$, realize we can recursively

- group skeletons
- eliminate more variables.

Where does this process start?

Demo: Skeletonization using Proxies (Hierarchical)

Hierarchically Block-Separable

In order to get $O(N)$ complexity, could we apply this procedure recursively?

(Figure following G. Martinsson, drawn by A. Fikl)

Hierarchically Block-Separable

- Using this hierarchical grouping gives us Hierarchically Block-Separable (HBS) matrices.
- If you have heard the word \mathcal{H}-matrix and \mathcal{H}^{2}-matrix, the ideas are very similar. Differences:
- \mathcal{H}-family matrices don't typically use the ID (instead often use Adaptive Cross Approximation or ACA)
- \mathcal{H}^{2} does target clustering (like FMM), \mathcal{H} does not (like Barnes-Hut)

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Rank and Smoothness

Near and Far: Separating out High-Rank Interactions
Ewald Summation
Barnes-Hut
Fast Mutipole
Direct Solvers
The Butterfly Factorization

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Recap: Fast Fourier Transform

The Discrete Fourier Transform (DFT) is given by:

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} e^{-\frac{2 \pi i}{N} n k} \quad(k=0, \ldots, N-1)
$$

The foundation of the Fast Fourier Transform (FFT) is the factorization:

$$
X_{k}=\underbrace{\sum_{m=0}^{N / 2-1} x_{2 m} e^{-\frac{2 \pi i}{N / 2} m k}}_{\text {DFT of even-indexed part of } x_{n}}+e^{-\frac{2 \pi i}{N} k} \underbrace{\sum_{m=0}^{N / 2-1} x_{2 m+1} e^{-\frac{2 \pi i}{N / 2} m k}}_{\text {DFT of odd-indexed part of } x_{n}}
$$

FFT: Data Flow

(Figure credit: Wikipedia)
Perhaps a little bit like a butterfly?

Fourier Transforms: A Different View

$$
于 f(x)=\int e^{i x t} f(d) d t
$$

Claim:
The [namierical] rank of the normalized Fourier transform with kerne $e^{i \gamma x t}$ is bounded by a constant times γ, at any fixed precision ϵ.
(i.e. rank is proportional to the area of the rectangle swept out by x and t) [O'Neil et al. '10]

Demo: Butterfly Factorization (Part I)

Recompression: Making use of Area-Bounded Rank

How do rectangular submatrices get expressed so as to reveal their constant rank?

