

Layer Potentials (I)
Let G_{k} be the Helmholtz kernel $(k=0 \rightarrow$ Laplace $)$. $\Gamma \operatorname{surface} \subseteq \mathbb{R}^{d}$

$$
\begin{aligned}
& S_{k} \sigma(x)=S_{\Gamma} G_{k}(x-y) \sigma(y) d S_{y} \\
& D_{k} \sigma(x)=\int_{\Gamma} \partial_{n_{y}} G_{k}(x-y) \sigma(y) d S_{y} \\
& S_{k}^{1} \sigma(\lambda)=\partial_{u_{x}} \int G_{k}(x-y) \sigma(y) d S_{y} \\
& D_{k}^{\prime} \sigma(x)=\partial_{u_{x}} S_{C} \partial_{n_{y}} G_{k}(x-y) \sigma(y) d S_{y}
\end{aligned}
$$

These operators map function σ on Γ to...

$$
\begin{aligned}
& \text { onto } \Gamma^{M} \\
& \text { onto } \mathbb{R}^{d}
\end{aligned}
$$

Layer Potentials (II)

Called layer potentials:

- S is called the single-layer potential
- D is called the double-layer potential
- $S^{\prime \prime}$ (and higher) analogously
(Show pictures using pytential/examples/layerpot.py, observe continuity properties.)
Alternate ("standard") nomenclature:

How does this actually solve a PDE?

Solve a (interior Laplace Dirichlet) BVP, $\partial \Omega=\Gamma$

$$
\Delta u=0 \quad \text { in } \Omega,\left.\quad u\right|_{\Gamma}=\left.f\right|_{\Gamma}
$$

"Represmation" $n(x)=S_{0}^{\sigma}(x)=\int_{\Gamma} G_{0}(x-y) \sigma(y) d S_{y}$

$$
\begin{aligned}
& \lim _{x \rightarrow n} \int_{0} \sigma(x)=S_{0} \sigma\left(x_{0}\right) \\
& \left(x_{0} y\right) \sigma(y) d S_{y}=f\left(x_{0}\right)
\end{aligned}
$$

unknown density os
S is compact \Rightarrow (E has may near-nullypaces \Rightarrow bad

IE BVP Solve: Observations (I)

Observations:

- One can choose representations relatively freely. Only constraints:
- Can I get to the solution with this representation? l.e. is the solution I'm looking for represented?
- Is the resulting integral equation solvable?

Q: How would we know?

IE BVP Solve: Observations (II)

- Some representations lead to better integral equations than others. The one above is actually terrible (both theoretically and practically). Fix above: Use $u(x)=D \sigma(x)$ instead of $u(x)=S \sigma(x)$. Q: How do you tell a good representation from a bad one?
- Need to actually evaluate $S \sigma(x)$ or $D \sigma(x) \ldots$ Q: How?
\rightarrow Need some theory

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis Norms and Operators
Compactness
Integral Operators
Riesz and Fredholm
A Tiny Bit of Spectral Theory

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis Norms and Operators
Compactness
Integral Operators
Riesz and Fredholm
A Tiny Bit of Spectral Theory

Singular Integrals and Potential Theory

Boundary Value Problems
Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Norms

Can create norm from inner product: $\|x\|=\sqrt{\langle x, x\rangle}$

$$
(f, g)=\int_{\Omega} f(x) g(x) d x
$$

Function Spaces

Name some function spaces with their norms.

- $L^{2} \rightarrow \sqrt{S(f)^{2}}$

$$
l_{l^{3} \rightarrow\|\stackrel{\rightharpoonup}{x}\|_{2}=\sqrt{\sum x_{i}^{2}}}
$$

- $L^{\infty} \rightarrow$ ass $\left.\sup \mid f(x)\right)$
$l^{-} \rightarrow\|\vec{x}\|_{\infty}=\max \left|x_{i}\right|$
- $C^{0}(\Omega)^{x} \quad \Omega$ closed 8 bod. $\|f\|_{\infty}=\max _{x}(f(x) \mid$
- $C^{\prime}(\Omega) \quad\|f\|_{c^{\prime}}=\|f\|_{\infty}+\left\|\rho^{\prime}\right\|_{0}$

Convergence
Name some ways in which a sequence can 'converge'.
Nom convergence:

$$
\begin{aligned}
x_{n} \rightarrow x: \Leftrightarrow \quad\left\|x_{n}-x\right\| & \rightarrow 0 \\
& \eta_{\text {need }} \text { limil }
\end{aligned}
$$

Candy sequence i
For all $\varepsilon>0$ there exists $a_{n} n$ sothat $\left\|x_{\nu}-x_{\mu}\right\|<\varepsilon .(\nu, \mu \geqslant n)$
$\frac{\text { Want: Cauchy sequences have limits }}{\text { ("complete" "Banach") }}$

Operators
X, Y : Banach spaces, $A: X \rightarrow Y$ linear operator
Definition (Operator norm)

$$
\|A\|:=\sup \{\|A x\|: x \in X,\|x\|=1\}
$$

Theorem

$$
\|A\| \text { bounded } \Leftrightarrow A \text { continuous }
$$

$$
\left\|A x_{n}\right\|<\underbrace{\|A\|_{0}}_{<\infty} \underbrace{\left\|x_{n}\right\|}_{\rightarrow 0} \rightarrow 0
$$

- What does 'linear' mean here? liner $A(x x+y)=\alpha A x+A \geqslant$
- Is there a notion of 'continuous at x ' for linear operators?

Operators: Examples

Which of these is bounded as an operator on functions on the real line?

- Multiplication by a scalar
- "Left shift"
- Fourier transform
- Differentiation
- Integration

depends on the nom.

Integral Equations: Zoology

$$
\begin{array}{ll}
\text { Volterra } & \text { Fredholm } \\
\hline \int_{a}^{x} k(x, y) f(y) d y=g(x) & \int_{G} k(x, y) f(y) d y=g(x)
\end{array}
$$

$$
\begin{array}{ll}
\text { First kind } & \text { Second Kind ("nappy") } \\
\hline \int_{G} k(x, y) f(y) d y=g(x) & f(x)+\int_{G} k(x, y) f(y) d y=g(x)
\end{array}
$$

Questions:
C)

- First row: First or second kind?

$$
\hat{\imath}(I+A) f=g
$$

- Second row: Volterra or Fredholm?
- Matrix (ie. finite-dimensional) analogs?
- What can happen in 2D/3D?
- Factor allowable in front of the identity?
- Why even talk about 'second-kind operators'?

$$
(\alpha I+A) f=g
$$

- Throw a $+\delta(x-y)$ into the kernel, back to looking like first kind. So?
- Is the identity in $(I+K)$ crucial?
"second kind"

$$
\begin{aligned}
g(x) & =f(x)+\int k(x, y) f(y) d y \quad \tilde{k}(x, y)=k(x, y)+\delta(x-y) \\
& =\int \tilde{k}(x, y) f(y) d y
\end{aligned}
$$

"First kina"
"second Kind"; Int, op. compact.

Integral Operators: Boundedness (=Continuity)

$$
\begin{array}{ll}
\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R} & x, \\
G^{2}=G \times G & (x, y)
\end{array}
$$

Theorem (Continuous kernel \Rightarrow bounded)
$G \subset \mathbb{R}^{n}$ closed, bounded ("compact"), $K \in C\left(G^{2}\right)$. Let

$$
(A \phi)(x):=\int_{G} K(x, y) \phi(y) d y .
$$

Then

$$
\|A\|_{\infty}=\max _{x \in G} \int_{G}|K(x, y)| d y .
$$

Show 's'. $\|A \varphi\|_{\infty}=\max _{k \in G}\left|\int K(x, y) \varphi(y) d y\right|$

$$
\begin{aligned}
& \leq \max _{x \in G} \int \mid k(x, y\|\varphi(y)\| d y \\
& \leq\|A\|_{\infty}\|\rho\|_{\infty} \frac{s\|\rho\|_{\infty}}{s}
\end{aligned}
$$

Solving Integral Equations

Given

$$
(A \phi)(x):=\int_{G} K(x, y) \varphi(y) d y, \quad \frac{1}{1-a}=\sum_{k=0}^{\infty} a^{k}
$$

are we allowed to ask for a solution of

$$
(\operatorname{ld} \bar{\pi} A) \varphi=g ?
$$

$$
\begin{aligned}
& \varphi=(1-A)^{-1} g \\
& -\sum_{k=0}^{\infty} A^{k} g \\
& \eta_{\text {Nennanu Serin }}
\end{aligned}
$$

Attempt 1: The Neumann series

Want to solve

$$
\varphi-A \varphi=(I-A) \varphi=g \text {. }
$$

Formally:

$$
\varphi=(I-A)^{-1} g .
$$

What does that remind you of?

