

•

Solving Integral Equations

Given

$$(A\phi)(x) := \int_G K(x,y)\varphi(y)dy,$$

are we allowed to ask for a solution of

$$(\operatorname{Id} \overline{\mathbf{a}} A)\varphi = g?$$

Attempt 1: The Neumann series

Want to solve

$$\varphi - A\varphi = (I - A)\varphi = g.$$

Formally:

$$\varphi = (I - A)^{-1}g. \stackrel{h = 4}{=} \frac{I}{J - A}$$

What does that remind you of?

Attempt 1: The Neumann series (II)

$$A: X \to X$$
 Banach, $||A|| < 1$ $(I - A)^{-1} = \sum_{k=0}^{\infty} A^k$ with $||(I - A)^{-1}|| \le 1/(1 - ||A||).$

- How does this rely on completeness/Banach-ness?
- There's an iterative procedure hidden in this. (Called *Picard Iteration*. Cf: Picard-Lindelöf theorem.) *Hint:* How would you compute $\sum_{k} A^{k} f$? $A^{0} || A^{0} ||$

En Arf "dunb" way xo: - P ×1: ×0+AP × := × + Are x, i= x, +A'F

Picard iteration

yoin f yi:= f + Ayo y2. + + Ay y: + f + Ay

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Norms and Operators Compactness Integral Operators Riesz and Fredholm A Tiny Bit of Spectral Theory

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Compact Sets

Definition (Precompact/Relatively compact) $M \subseteq X$ precompact: \Leftrightarrow all sequences $(x_k) \subseteq M$ contain a subsequence converging in XDefinition (Compact/'Sequentially complete') $M \subseteq X$ compact: \Leftrightarrow all sequences $(x_k) \subset M$ contain a subsequence converging in M \blacktriangleright Precompact \Rightarrow bounded \blacktriangleright Precompact \Leftrightarrow bounded (finite dim. only!)

$$M = \{ x_0, x_i\}$$

$$(ol (y_k) \in M. \quad y_{k:=} \times n(k) \qquad n(k) \in \{0, 1\}$$

$$Then. \qquad N(i) = \#\{ n(k)=i : k \in \mathbb{N}_{2} \ i \in \{0, 1\} \}$$

$$N(0) < \infty \ n \ N(i) < \infty \qquad con \ n \ b \qquad h = ppm \ .$$

$$Pick \quad i \in \mathbb{N}_{2} \quad \text{where } M(i) = \infty \ .$$

$$Deflee \qquad m(k) = \ k \ dh \quad fine \quad fhat \qquad x_i \quad is \ visiled \qquad by \ y_m$$

$$Y_m(k) = \times i$$

Compact Sets (II)

Counterexample to 'precompact \Leftrightarrow bounded'? (∞ dim)

$$X_{0} := (1, 0, 0, 0, ...) \qquad ||X_{0}||_{\infty} = 1$$

$$X_{1} := (0, 1, 0, 0, 0, 0, ...) \qquad \vdots$$

$$X_{2} := (0, 0, 1, 0, ...) \qquad \vdots$$

$$X_{3} := (0, 0, 0, 1, 0, ...) \qquad \vdots$$

$$||X_i - X_j|| = 1$$
 if $i \neq j$

Compact Operators

X, Y: Banach spaces

Definition (Compact operator)

 $T: X \rightarrow Y$ is *compact* : \Leftrightarrow T(bounded set) is precompact.

Theorem

•
$$T, S$$
 compact $\Rightarrow \alpha T + \beta S$ compact

- One of T, S compact \Rightarrow S \circ T compact
- ▶ T_n all compact, $T_n \rightarrow T$ in operator norm $\Rightarrow T$ compact

Questions:

• Let $\dim T(X) < \infty$. Is T compact?

Is the identity operator compact?

 $(S \circ T)(x) = S(T(x))$

Intuition about Compact Operators

- Compact operator: As finite-dimensional as you're going to get in infinite dimensions.
- Not clear yet-but they are moral (∞-dim) equivalent of a matrix having *low numerical rank*.
- Are compact operators continuous (=bounded)? yes
- What do they do to high-frequency data?
- What do they do to low-frequency data?

() must be smoothing

Arzelà-Ascoli

Let $G \subset \mathbb{R}^n$ be compact.

Theorem (Arzelà-Ascoli [Kress LIE 3rd ed. Thm. 1.18])

 $U \subseteq C(G)$ is precompact iff it is bounded and equicontinuous.

Equicontinuous means

Equicontinuous means
For all
$$\varepsilon > 0$$
 there exists $\delta > 0$ s.d.
For all $x_1y_1 = x - y_1 = 0$ => $|f(x) - f(y)| < \varepsilon$.

Continuous means:

For all
$$\varepsilon > 0$$
 there exists $\delta > 0$ s.t.
For all $x_1y: | x - y | < \delta = 0$ $|f(x) - f(y)| < \varepsilon$.

Arzelà-Ascoli: Proof Sketch for $b\wedge \, e \Rightarrow c$

