Covier Ann: - no office hours (I + A) +toduy + The (sorry!) - project proposals comput - HW4 Arzda - Ascolii A e layar pote. Gouls: H= 246C ; - workly sing K 3M>0 Ũ= { 4 € C° : || ell < M}) computed Alutal - Riesz / Fredholm A compact; A(U) bomde 1 C A bourded A cont. - spectral theory (ompuch

Weakly singular $G \subset \mathbb{R}^n$ compact

Definition (Weakly singular kernel)

- K defined, continuous everywhere except at x = y yes: r = 0.4
- ▶ There exist C > 0, $\alpha \in (0, n]$ such that

$$|K(x,y)| \leq C|x-y|^{\alpha-n}$$
 $(x \neq y)$

40 : V

Theorem (Weakly singular kernel \Rightarrow compact [Kress LIE 3rd ed. Thm. 2.29])

K weakly singular. Then

$$(A\phi)(x) := \int_G K(x,y)\phi(y)dy.$$

is compact on C(G), where $cl(G^{\circ}) = G$.

Weakly singular: Proof Outline

Outline the proof of 'Weakly singular kernel \Rightarrow compact'.

Weakly singular (on surfaces)

 $\Omega \subset \mathbb{R}^n$ bounded, open, $\partial \Omega$ is C^1 (what does that mean?)

Definition (Weakly singular kernel (on a surface))

- K defined, continuous everywhere except at x = y
- ▶ There exist C > 0, $\alpha \in (0, n-1]$ such that

$$|K(x,y)| \leq C|x-y|^{\alpha-n+1}$$
 $(x,y \in \partial\Omega, x \neq y)$

Theorem (Weakly singular kernel \Rightarrow compact [Kress LIE 3rd ed. Thm. 2.30])

K weakly singular on $\partial\Omega$. Then $(A\phi)(x) := \int_{\partial\Omega} K(x,y)\phi(y)dy$ is compact on $C(\partial\Omega)$.

Q: Has this estimate gotten worse or better?

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Norms and Operators Compactness Integral Operators **Riesz and Fredholm** A Tiny Bit of Spectral Theory

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Riesz Theory (I)

Still trying to solve

$$L\phi := \underbrace{(I-A)}_{L}\phi = \phi - A\phi = f$$

with A compact.

Theorem (First Riesz Theorem [Kress LIE 3rd ed., Thm. 3.1])

N(L) is finite-dimensional.

Questions:

- ► What is N(L) again? null space (L) = { p; (p=0 }
- Why is this good news?

Riesz First Theorem: Proof Outline

Show it.

$$\begin{aligned} \varphi_{\in N(L) \in L} \varphi_{=0} & (i - A) \varphi_{=0} & (-) \varphi_{-} A \varphi_{=0} \\ & (-) \varphi_{-} A \varphi_{=0} \\ & (-) \varphi_{-} A \varphi_{-} \\$$

.

Riesz Theory (II)

Theorem (Riesz theory [Kress LIE 3rd ed., Thm. 3.4])

A compact. Then: one for one
$$Ohlor$$

(I - A) injective \Leftrightarrow (I - A) surjective $hlor$
It's either bijective or neither s nor i.
If (I - A) is bijective, $(I - A)^{-1}$ is bounded.
Rephrase for solvability:

Key shortcoming?

Riesz Theory: Boundedness Proof Outline

Assuming
$$(I - A)$$
 is bijective, show that $(I - A)^{-1}$ is bounded.
Assuming $(I - A)$ is bijective, show that $(I - A)^{-1}$ is bounded.
Can pick p_h with $\|p_h\| = 1$ with $\|C'p_h\| > h_-$
 $g_h = p_h/\|C'p_h\| \to 0$ $g_h = (-'p_h/\|C'p_h\|)$
 $0 = g_h = f_{h-1} = (-q_h - q_h - A q_h)$ $\|P_h\| = 1$
 $\|$

Hilbert spaces

Hilbert space: Banach space with a norm coming from an *inner product*:

$$(\alpha x + \beta y, z) = ? \qquad \forall (x, z) + \beta / y, z)$$

$$(x, \alpha y + \beta z) = ?$$

$$(x, x)? = 0 \quad (z) \quad x = 0 \qquad ||x|| = \int (x, x)$$

$$(y, x) = ? \quad (x, y)$$

$$||x|| = \int (x, y)$$

$$(y, z) = ? \quad (x, y)$$

$$||x|| = \int (x, y)$$

$$(y, z) = ? \quad (x, y)$$

$$||x|| = \int (x, y)$$

$$(y, z) = ? \quad (x, y)$$

$$||x|| = \int (x, y)$$

$$(y, z) = ? \quad (x, y)$$

$$||x|| = \int (x, y)$$

$$(y, z) = ? \quad (x, y)$$

$$||x|| = \int (x, y)$$

$$(y, z) = ? \quad (x, y)$$

$$||x|| = \int (x, y)$$

$$(y, z) = ? \quad (x, y)$$

$$||x|| = \int (x, y)$$

$$(y, z) = ? \quad (x, y)$$

$$(y, z) = ? \quad (x, y)$$

$$||x|| = \int (x, y)$$

$$(y, z) = ? \quad (x, y)$$

Continuous and Square-Integrable

Can we carry over $C^0(G)$ boundedness/compactness results to $L^2(G)$?

X, Y normed spaces with a scalar product so that $|(\phi, \psi)| \le ||\phi|| ||\psi||$ for $\phi, \psi \in X$.

Theorem (Lax dual system [Kress LIE 3rd ed. Thm. 4.13])

Let $U \subseteq X$ be a subspace and let $A : X \to Y$ and $B : Y \to X$ be bounded linear operators with

$$(A\phi,\psi)=(\phi,B\psi)\qquad (\phi\in U,\psi\in Y).$$

Then $A : U \to Y$ is bounded with respect to $\|\cdot\|_s$ induced by the scalar product and $\|A\|_s^2 \le \|A\| \|B\|$.

Based on this, it is also possible to carry over compactness results.

Adjoint Operators

Definition (Adjoint oeprator)

 A^* called adjoint to A if

$$(Ax, y) = (x, A^*y)$$

for all x, y.

Facts:

• A compact
$$\Rightarrow$$
 A^{*} compact

Adjoint Operator: Observations?

What is the adjoint operator in finite dimensions? (in matrix representation)

What do you expect to happen with integral operators?

Adjoint of the single-layer?

Adjoint of the double-layer?

Fredholm Alternative

 $A: X \rightarrow X$ compact. Then either:

Seen these statements before?

Fundamental Theorem of Linear Algebra

[Credit: Wikipedia]