Ann.

- no office hours toduy + The (sorry.')
- projecr proposals
- Hw4

Gouls:

- weakly sing K
$\rightarrow$ coupuct
- Riesz/Fredholn
- speclral theorr

Revimen


Arzela: Ascoli?
$A \leftarrow$ layar pot.
$3 M>0$

$$
\mathrm{Su}_{0}=\left\{\varphi \in C^{0}:\|e\|_{\propto} \subset M\right\}
$$

Alutan?
A compuct: $A(U)$ bomded $\leftarrow A$ bounded compach $\Leftrightarrow A$ cal.

$$
\begin{aligned}
& \text { "antidariallue" } \\
& (Z f)(x): \int_{0}^{x} p(\xi) d \xi=\int_{0}^{1} \underbrace{1_{\{\xi<x)}}_{k(x, \xi)} \text { f(\{)|dq} \\
& \text { (1) } f(x):=f^{\prime}(x) \\
& \text { nok (ontinnon) } \\
& K \text { continuous } \Rightarrow \int K(t, y) f(\xi) d \xi \text { compact }
\end{aligned}
$$

## Weakly singular

$G \subset \mathbb{R}^{n}$ compact

## Definition (Weakly singular kernel)

-K defined, continuous everywhere except at $x=y$ yes: $\llcorner\quad \neg \nsim \varepsilon$

- There exist $C>0, \alpha \in(0, n]$ such that


$$
|K(x, y)| \leq C|x-y|^{\alpha-n} \quad(x \neq y)
$$

Theorem (Weakly singular kernel $\Rightarrow$ compact [Kress LIE 3rd ed. Thm. 2.29])
$K$ weakly singular. Then

$$
(A \phi)(x):=\int_{G} K(x, y) \phi(y) d y
$$

is compact on $C(G)$, where $\mathrm{cl}\left(G^{\circ}\right)=G$.

Weakly singular: Proof Outline

$$
\int_{0}^{1} \frac{1}{x} d x
$$

Outline the proof of 'Weakly singular kernel $\Rightarrow$ compact'.

$$
\begin{aligned}
& A \varphi(x)=\int k(x, y) \varphi(y) d \gamma \\
& \begin{aligned}
\int_{B(q d)}|x-y|_{2}^{\alpha-n} d y={\underset{\substack{n}}{\omega_{n}}}_{\substack{\text { surface } \\
\text { area of the } \\
\text { sphere tu } \mathbb{R}^{2}}} \int_{0}^{d} \rho^{\alpha-h} \rho^{n-1} d \rho & =v_{n} \int_{0}^{d} \rho^{\alpha-1} d \rho \\
\text { bounded } \checkmark & =\frac{d^{\alpha}}{\alpha} u_{n}
\end{aligned} \\
& h(x):=\underbrace{1}_{\frac{1}{2}} \quad h \in C^{0} \\
& K_{n}(x, y):=h(n|x-y|) K(x, y) \in C^{0} \quad K_{h} \rightarrow K \\
& \rightarrow\left(A_{n} \varphi \mid(x):=\int k_{n}(x, y) \varphi(y) d_{y} \quad A_{n} \rightarrow A\right. \text { in nom, }
\end{aligned}
$$

$A_{n}$ compact $\Rightarrow A$ compel.

## Weakly singular (on surfaces)

$\Omega \subset \mathbb{R}^{n}$ bounded, open, $\partial \Omega$ is $C^{1}$ (what does that mean?)

## Definition (Weakly singular kernel (on a surface))

- $K$ defined, continuous everywhere except at $x=y$
- There exist $C>0, \alpha \in(0, n-1]$ such that

$$
|K(x, y)| \leq C \mid x-y \underbrace{\alpha-n+1} \quad(x, y \in \partial \Omega, x \neq y)
$$

## Theorem (Weakly singular kernel $\Rightarrow$ compact [Kress LIE 3rd ed. Thm. 2.30])

$K$ weakly singular on $\partial \Omega$. Then $(A \phi)(x):=\int_{\partial \Omega} K(x, y) \phi(y) d y$ is compact on $C(\partial \Omega)$.

Q: Has this estimate gotten worse or better?

## Outline

Introduction

## Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver
Going Infinite: Integral Operators and Functional Analysis
Norms and Operators
Compactness
Riesz and Fredholm
A Tiny Bit of Spectral Theory

Singular Integrals and Potential Theory

Boundary Value Problems
Back from Infinity: Discretization
Computing Integrals: Approaches to Quadrature

Going General: More PDEs

## Riesz Theory (I)

Still trying to solve
with $A$ compact.

$$
L \phi:=\underbrace{(I-A)}_{L} \phi=\phi-A \phi=f
$$

Theorem (First Riesz Theorem [Kress LIE 3rd ed., Thm. 3.1])
$N(L)$ is finite-dimensional.
Questions:
What is $N(L)$ again? null space $(L)=\{\varphi:(\varphi=0\}$

- Why is this good news?

Riesz First Theorem: Proof Outline

Show it.

$$
\begin{aligned}
\varphi \in N(L) A L \varphi=0 \Leftrightarrow(1-A) \varphi=0 & \Leftrightarrow \varphi-A \varphi \leq 0 \\
\left.A\right|_{N(L)}=I \quad & \Leftrightarrow N(L) \text { mush be } \operatorname{din}(N(L))^{<\alpha} .
\end{aligned}
$$

Riesz Theory (II)
Theorem (Riesz theory [Kress LIE 3rd ed., Thm. 3.4])

It's either bijective or neither s nori:
If $(I-A)$ is bijective, $(I-A)^{-1}$ is bounded.
Rephrase for solvability:
uniqueness $\Rightarrow$ existence (civiliced)
Key shortcoming?
nullspace $\Rightarrow$ we're toast.

Riesz Theory: Boundedness Proof Outline
Assuming $(I-A)$ is bijective, show that $(I-A)^{-1}$ is bounded.
Assume $L^{-1}$ un bounded.
Con pick $f_{n}$ with $\left\|f_{n}\right\|=1$ with $\left\|C^{-1} f_{n}\right\|>n$.

$$
\begin{aligned}
g_{n}=f_{n} /\left\|C^{-1} \rho_{n}\right\| \rightarrow \sigma & \varphi_{n}=L^{-1} \rho_{n} /\left\|c^{-1} \rho_{n}\right\| \\
O \in g_{n}=\frac{\rho_{n}}{\left\|c^{-1} \rho_{n}\right\|}=L_{n}=\varphi_{n}-A \varphi_{n} & \\
\text { Pick subseq of } & \varphi_{n}: \varphi_{n}(k): A \varphi_{n} \|=1 \\
& A(k) \rightarrow \varphi
\end{aligned}
$$

(Quite a bit more to the proof: Riesz' second, third theorems, Pries numbers, ...)

$$
A p-\varphi \Rightarrow \varphi \in N(L)
$$

contradicts inje clivitgo9.

Hilbert spaces
Hilbert space: Banach space with a norm coming from an inner product:

$$
\begin{aligned}
& (\alpha x+\beta y, z)=? \quad \alpha(x, z)+\beta(y, z) \\
& (x, \alpha y+\beta z)=?
\end{aligned}
$$



## Continuous and Square-Integrable

Can we carry over $C^{0}(G)$ boundedness/compactness results to $L^{2}(G)$ ? $X, Y$ normed spaces with a scalar product so that $|(\phi, \psi)| \leq\|\phi\|\|\psi\|$ for $\phi, \psi \in X$.

## Theorem (Lax dual system [Kress LIE 3rd ed. Thm. 4.13])

Let $U \subseteq X$ be a subspace and let $A: X \rightarrow Y$ and $B: Y \rightarrow X$ be bounded linear operators with

$$
(A \phi, \psi)=(\phi, B \psi) \quad(\phi \in U, \psi \in Y)
$$

Then $A: U \rightarrow Y$ is bounded with respect to $\|\cdot\|_{s}$ induced by the scalar product and $\|A\|_{s}^{2} \leq\|A\|\|B\|$.

Based on this, it is also possible to carry over compactness results.

## Adjoint Operators

## Definition (Adjoint oeprator)

$A^{*}$ called adjoint to $A$ if

$$
(A x, y)=\left(x, A^{*} y\right)
$$

for all $x, y$.
Facts:

- $A^{*}$ unique
- $A^{*}$ exists
- $A^{*}$ linear
- $A$ bounded $\Rightarrow A^{*}$ bounded
- $A$ compact $\Rightarrow A^{*}$ compact


## Adjoint Operator: Observations?

What is the adjoint operator in finite dimensions? (in matrix representation)

What do you expect to happen with integral operators?

Adjoint of the single-layer?

Adjoint of the double-layer?

## Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE 3rd ed. Thm. 4.17])
$A: X \rightarrow X$ compact. Then either:

- I - A and $I-A^{*}$ are bijective or:
- $\operatorname{dim} N(I-A)=\operatorname{dim} N\left(I-A^{*}\right)$
- $(I-A)(X)=N\left(I-A^{*}\right)^{\perp}$
- $\left(I-A^{*}\right)(X)=N(I-A)^{\perp}$

Seen these statements before?

## Fundamental Theorem of Linear Algebra


[Credit: Wikipedia]

