$A_{n n}$

- no office honrs todyy Revien
- project proposals
- Hwa
- proj. presentantios May 7 Muyg proj: mal' due May 10
Gals
- Fredholm
- spechral theory
- PDES
a umiqueress.

A compare

$$
L=I-A
$$

(R1) $\operatorname{din} N(L)<\infty$
$L \varphi=g$
(14) (injective \Leftrightarrow (surjeithe

$$
\prod_{i n} \begin{aligned}
& \text { uniquenoss } \\
& \text { impoitant, }
\end{aligned}{ }^{\text {exititace }}
$$

Mes totally falls apent if

$$
N(C)=\{0\} .
$$

$A \vec{x}=\vec{b} \quad A \in \mathbb{R}^{m \times n}$

Continuous and Square-Integrable

Can -we carry over $C^{0}(G)$ boundedness/compactness results to $L^{2}(G)$?
X, Y normed spaces with a scalar product so that $|(\phi, \psi)| \leq\|\phi\|\|\psi\|$ for
$\phi, \psi \in X$.

Theorem (Lax dual system [Cress LIE 3rd ed. Thm. 4.13])

Let $U \subseteq X$ be a subspace and let $A: X \rightarrow Y$ and $B: Y \rightarrow X$ be bounded linear operators with

$$
(A \phi, \psi)=(\phi, B \psi) \quad(\phi) \in U, \psi \in Y) .
$$

Then $\underline{A} \cdot U \rightarrow Y$ is bounded with respect to $\|\cdot\|_{s}$ induced by the scalar product and $\|A\|_{s}^{2} \leq\|A\|\|B\|$.

Based on this, it is also possible to carry over compactness results. from $\left(0\right.$ to L^{2}.

Adjoint Operators

Definition (Adjoint oeprator)
A^{*} called adjoint to A if

$$
\begin{gathered}
(x, y)=x^{\top} y \\
(A x, y)=\left(x, A^{*} y\right) \quad\left(A_{x}, \dot{y}\right)=\left(A_{x}\right)^{\Gamma} y=\left(x, A_{y}^{\top}\right)
\end{gathered}
$$

for all x, y.
Facts:

- A^{*} unique
- A^{*} exists
- A^{*} linear
- A bounded $\Rightarrow A^{*}$ bounded
- A compact $\Rightarrow A^{*}$ compact

Adjoint Operator: Observations?
What is the adjoint operator in finite dimensions? (in matrix representation)

$$
A^{\top}
$$

What do you expect to happen with integral operators?

$$
A_{\varphi}(x)=\int K(x, y) \varphi(y) d y \quad A^{*} \varphi(t)=\int K(y, x) \varphi(y) d y
$$

Adjoint of the single-layer?

$\operatorname{lapluce} 20 S \varphi\left(x \mid-c \int \log \left(\|x-y\|_{2}\right) \varphi(y \mid d y\right.$	$S^{*}=S$
Adjoint of the double-layer?	Self-adjoint ("symmelnc")
$\operatorname{D\varphi }(x)=\int \partial_{n y} \log \left(\|x-y\|_{2}\right) \varphi(y) d y$	$D^{*}=S^{\prime}$
$S^{\prime} \varphi(x)=c \int \partial_{n x} \log \left(\|x-y\|_{2}\right) \varphi(y \mid d y$	

Fredholm Alternative

Fundamental Theorem of Linear Algebra

$A \in \mathbb{R}^{n \times n}$

[Credit: Wikipedia]

Fredholm Alternative in IE terms
Translate to language of integral equation solvability:

I see above: RHS or th. to N(A)

Fredholm Alternative: Further Thoughts

What about symmetric kernels $(K(x, y)=K(y, x))$?
\square

$$
A=A^{x}
$$

Where to get uniqueness? / stale wen a bout $N\left(1-A^{4}\right)$
from else where (PDE)

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra
Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis
Norms and Operators
Compactness
Integral Operators
Riesz and Frecholin
A Tiny Bit of Spectral Theory

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Spectral Theory: Terminology

$$
\begin{aligned}
A x=\lambda * & (A-\lambda I) x=0 \\
& N(A-\lambda I) \neq\{0\}
\end{aligned}
$$

$A: X \rightarrow X$ bounded, λ is a \ldots value:
Definition (Eigenvalue)
There exists an element $\phi \in X, \phi \neq 0$ with $A \phi=\lambda \phi$.
Definition (Regular value)
The "resolvent" $(\lambda I-A)^{-1}$ exists and is bounded.
Can a value be regular and "eigen" at the same time?

Resolvent Set and Spectrum

\square
Definition (Resolvent set)
$\rho(A):=\{\lambda$ is regular $\}$
Definition (Spectrum)
$\sigma(A):=\mathbb{C} \backslash \rho(A)$

Spectral Theory of Compact Operators

Theorem

$A: X \rightarrow X$ compact linear operator, $X \infty$-dim.
Then:

- $0 \in \sigma(A) \quad \sigma$ is rol a reg. value
- $\sigma(A) \backslash\{0\}$ consists only of eigenvalues
- $\sigma(A) \backslash\{0\}$ is at most countable
- $\sigma(A)$ has no accumulation point except for 0

Spectral Theory of Compact Operators: Proofs

Show the first part.

Show second part.

