no office hours hody
project proposals
HWY · proj. presentations May & Muy 9 proj. mal due May 10 Colo · Fredholm · spectral theory • PDEs. s unique vess.

A compact second-hin L= I-A (l) $d_{k}N(L) < \infty$ (in jective (=) (surjedde I uniquenoss important; "=)" Rhe totally falls apart if $N(C) = \{0\}.$ Aelluxu Az=6

Continuous and Square-Integrable

Can we carry over $C^0(G)$ boundedness/compactness results to $L^2(G)$? X, Y normed spaces with a scalar product so that $|(\phi, \psi)| \le ||\phi|| ||\psi||$ for $\phi, \psi \in X$.

Theorem (Lax dual system [Kress LIE 3rd ed. Thm. 4.13])

Let $U \subseteq X$ be a subspace and let $A : X \to Y$ and $B : Y \to X$ be bounded linear operators with

$$(A\phi,\psi)=(\phi,B\psi) \quad (\phi\in U,\psi\in Y).$$

Then $\underline{A} : U \to Y$ is bounded with respect to $\|\cdot\|_s$ induced by the scalar product and $\|A\|_s^2 \le \|A\| \|B\|$.

Based on this, it is also possible to carry over compactness results.

from (° to L².

Adjoint Operators

Definition (Adjoint oeprator)

 A^* called adjoint to A if

for all x, y.

Facts:

 $(Ax, y) = (x, A^*y)$

(+, 4)= + 14

(Ax, y)=(Ax) y = (x, Ay

Adjoint Operator: Observations?

What is the adjoint operator in finite dimensions? (in matrix representation)

Ar

What do you expect to happen with integral operators?

A+(x) - S K(x,y) + (y) dy A* p(x) = SK(y,x) + (y) dy

Adjoint of the single-layer?

Fredholm Alternative

Fundamental Theorem of Linear Algebra

[Credit: Wikipedia]

Fredholm Alternative in IE terms

Translate to language of integral equation solvability:

(see above: RHS or the to N(A))

Fredholm Alternative: Further Thoughts

What about symmetric kernels (K(x, y) = K(y, x))?

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Norms and Operators Compactness Integral Operators Riesz and Fredholm A Tiny Bit of Spectral Theory

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Resolvent Set and Spectrum

Definition (Resolvent set)

 $\rho(A) := \{\lambda \text{ is regular}\}$

Definition (Spectrum)

 $\sigma(A) := \mathbb{C} \setminus \rho(A)$

Spectral Theory of Compact Operators

Theorem

 $A: X \rightarrow X$ compact linear operator, $X \infty$ -dim. Then:

- ▶ $0 \in \sigma(A)$ σ is not a regulate
- $\sigma(A) \setminus \{0\}$ consists only of eigenvalues
- $\sigma(A) \setminus \{0\}$ is at most countable
- $\triangleright \sigma(A)$ has no accumulation point except for 0

Spectral Theory of Compact Operators: Proofs

Show the first part.

Show second part.