Ann:

- project proposals
- pres: Maj 7, y
- due: May 10
- Hwy

Goals:

- spectral review
- harmomi functions $\Delta u=0$ G one-liner proofs

Reviews:
D ($1-A)_{\varphi=y}$ solvability \hookrightarrow lies \rightarrow Fredholm

$$
\begin{aligned}
& (1-A)(x)=N\left(1-A^{*}\right)^{\perp} \\
& (I-A)^{*}=I^{*}-A^{*}=I-A^{*} \\
& (I x, y)=(x, y)
\end{aligned}
$$

D spectral

Spectral Theory: Terminology
$A: X \rightarrow X$ bounded, λ is a \ldots value:
Definition (Eigenvalue)
There exists an element $\phi \in X, \phi \neq 0$ with $A \phi=\lambda \phi.) \Leftrightarrow \varphi \in N(\lambda t-\mu)$
Definition (Regular value)
The "resolvent t " $(\lambda I-A)^{-1}$ exists and is bounded.
Can a value be regular and "eigen" at the same time?
no

What's special about ∞-dim here?
$\lambda \in \mathbb{C}$ halle sigh nor regular

Resolvent Set and Spectrum

Definition (Resolvent set)

$$
\rho(A):=\left\{\lambda_{\text {is regular }\}} \quad \varsigma \mathbb{C} \Leftrightarrow\left\{\lambda_{i}(\lambda I-A)^{-1} \text { exists }\right\}\right.
$$

Definition (Spectrum)

$$
\sigma(A):=\mathbb{C} \backslash \rho(A) \quad \subseteq \mathbb{C} \quad \Leftrightarrow\left(\lambda:(\lambda I-A)^{-1}-\text { or curbonla }\right)
$$

Spectral Theory of Compact Operators

$$
\begin{aligned}
& \text { epact Operators } \partial_{x} \text { eigme for foll } \alpha c \ell \\
& \partial_{x} e^{i \alpha x}=\frac{(i \alpha)}{\lambda} e^{i \alpha x}
\end{aligned}
$$

Theorem
$A: X \rightarrow X$ compact linear operator, $X \infty$-dim.
Then:
$0 \in \sigma(A)$
$\sigma(A) \backslash\{0\}$ consists only of eigenvalues
$\sigma(A) \backslash\{0\}$ is at most countable
$\sigma(A)$ has no accumulation point except for 0

Spectral Theory of Compact Operators: Proofs
eíyend. $A_{x}=\lambda_{x} \quad(x \neq 0)$
Show the first part. $0 \in \theta(A)$
$\Leftrightarrow 0$ is not a regular value. $\Leftrightarrow A^{-1}$ does not exist or is not bonded.
Suppose A^{-1} existed and is bonded. $\quad I=A A^{-1}$ compel (\Leftrightarrow) dint
Show second part.
Let $\lambda \in \sigma(A) \Leftrightarrow(\lambda I-A)^{-1}$ does not exist and is not bonded a
$\lambda I-A$ is hal bijection

$$
\begin{aligned}
& \exists \varphi:(\lambda \varphi-A+)=\partial \\
& \Leftrightarrow \mu \text { is eight. } \\
& \leftrightarrow \text { has uullipace }
\end{aligned}
$$

Toslow: A injective $\Leftrightarrow \quad N(A)=\{0\} \quad(A$ linear $)$

$$
\begin{gathered}
\Rightarrow 4 \quad \forall x, y: A x=A y \Rightarrow x=y \\
(\Leftrightarrow \forall x \neq y: A x+A y) \\
A(x-y)=0 \Rightarrow x-y=0 \\
\forall z \quad A z=0 \Rightarrow z=0 \\
\Rightarrow N(A)=\{0\}
\end{gathered}
$$

Spectral Theory of Compact Operators: Implications

Rephrase last two: how many eigenvalues with $|\cdot| \geq R$?
finimb many

Recap: What do compact operators do to high-frequency data?
squish
Don't confuse I - A with A itself!

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory
Singular Integrals
Green's Formula and Its Consequences
Jump Relations

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory
Singular Integrals
Green's Formula and Its Consequences
Jump Relations

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Recap: Layer potentials

$$
\begin{aligned}
& (S \sigma)(x):=\int_{\Gamma} G(x-y) \sigma(y) d s_{y} \\
& \left(S^{\prime} \sigma\right)(x):=P V \hat{n} \cdot \nabla_{x} \int_{\Gamma} G(x-y) \sigma(y) d s_{y} \\
& (D \sigma)(x):=P V \int_{\Gamma} \hat{n} \cdot \nabla_{y} G(x-y) \sigma(y) d s_{y} \\
& \left(D^{\prime} \sigma\right)(x):=f \cdot p \cdot \hat{n} \cdot \nabla_{x} \int_{\Gamma} \hat{n} \cdot \nabla_{y} G(x-y) \sigma(y) d s_{y} \quad \Delta G=\delta
\end{aligned}
$$

Definition (Harmonic function)

$$
\Delta u=0 \quad \text { at } \quad \text { r) }
$$

Where are layer potentials harmonic? $\quad 6=\frac{1}{2 \pi} \log \quad \frac{1}{411} \frac{1}{4}$ away from ?

$$
\begin{aligned}
& \Delta_{*} \int_{\Gamma} G(x-y) \sigma(y) d s_{\gamma} \\
= & \int \underbrace{D_{x} \sigma(x-y) \sigma(y) d s_{\gamma}}_{\sigma(x-y)} \\
= & \int \delta(x-y) \sigma(y) d s_{\gamma}=0
\end{aligned}
$$

On the double layer again

$$
\eta^{(\text {sniface })}
$$

Is the double layer actually weakly singular? Recap:
Definition (Weakly singular kernel)

- K defined, continuous everywhere except at $x=y$
- There exist $C>0, \alpha \in(0, n-1]$ such that

$$
|K(x, y)| \leq C|x-y|^{\alpha--\uparrow 1} \quad(x, y \in \partial \Omega, x \neq y)
$$

Actual Singularity in the Double Layer (2D)

Cauchy Principal Value
But I don't want to integrate across a singularity! \rightarrow punch it out.
Problem: Make sure that what's left over is well-defined

$$
\int_{-1}^{1} \frac{1}{x} d x ?
$$

$$
\mathbb{P V} \int_{-1}^{1} \frac{1}{x} d x=\lim _{\varepsilon \rightarrow 0} \int_{-1}^{-\varepsilon} \frac{1}{x} d x+\int_{2}^{1} d x
$$

defined via cancellation of blow ups.

$$
P V \int_{-1}^{1} \frac{1}{x} d x=\lim _{\varepsilon \rightarrow 0} \int_{-1}^{-\varepsilon} \frac{1}{x} d x+\int_{22}^{1} d x
$$

Principal Value in n dimensions

Again: Symmetry matters!
hap to be a circle.

What about even worse singularities?

$$
f_{. p}
$$

Recap: Layer potentials

$$
\begin{aligned}
(S \sigma)(x) & :=\int_{\Gamma} G(x-y) \sigma(y) d s_{y} \\
\left(S^{\prime} \sigma\right)(x) & :=\mathrm{PV} \hat{n} \cdot \nabla_{x} \int_{\Gamma} G(x-y) \sigma(y) d s_{y} \\
(D \sigma)(x) & :=\mathrm{PV} \int_{\Gamma} \hat{n} \cdot \nabla_{y} G(x-y) \sigma(y) d s_{y} \\
\left(D^{\prime} \sigma\right)(x) & :=\text { f.p. } \hat{n} \cdot \nabla_{x} \int_{\Gamma} \hat{n} \cdot \nabla_{y} G(x-y) \sigma(y) d s_{y}
\end{aligned}
$$

Important for us: Recover 'average' of interior and exterior limit without having to refer to off-surface values.
(to be shown)

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory
Singular Integrals
Green's Formula and Its Consequences
Jump Relations

Boundary Value Problems

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Green's Theorem

Ω bounded
Theorem (Green's Theorem [Kress LIE 2nd ed. Thm 6.3])

$$
\begin{gathered}
\int_{\Omega} u \Delta v+\nabla u \cdot \nabla v=\int_{\partial \Omega} u(\hat{n} \cdot \nabla v) d s \\
\int_{\Omega} u \Delta v-v \triangle u=\int_{\partial \Omega} u(\hat{n} \cdot \nabla v)-v(\hat{n} \cdot \nabla u) d s
\end{gathered}
$$

If $\triangle v=0$ and $u=1$, then

$$
\begin{aligned}
& \text { dis grad } u=0 \quad \int_{\partial \Omega} \hat{n} \cdot \nabla v=? \\
& \int_{\Omega} u \Delta \delta v-v \delta_{0} u=\int_{\partial \Omega} v(\hat{n} \cdot \nabla v)-v(\hat{n} \cdot \underset{0}{\nabla u) d s}
\end{aligned}
$$

Green's Formula \qquad

$$
\int_{\Omega} u \triangle v-v \triangle u=\int_{\partial \Omega} u(\hat{n} \cdot \nabla v)-v(\hat{n} \cdot \nabla u) d s
$$

Can you write that more briefly?

$$
\begin{aligned}
-\int_{\Omega} v(y) \delta(x-y) d y & =\int_{\partial \Omega} G(x-y) \partial_{n} v-\int_{\partial \Omega_{n} G} \partial G \\
\left\{\begin{array}{cc}
v(x) & x \in \Omega \\
0 & x \notin \Omega
\end{array}\right. & =S\left(\partial_{n} v\right)-D(v)
\end{aligned}
$$

Green's Formula (Full Version)

Ω bounded
Theorem (Green's Formula [Kress LIE 2nd ed. Thm 6.5])
If $\triangle u=0$, then

Green's Formula and Cauchy Data

Suppose I know 'Cauchy data' $\left(\left.u\right|_{\partial \Omega},\left.\hat{n} \cdot \nabla u\right|_{\partial \Omega}\right)$ of u. What can I do?

What if Ω is an exterior domain?

What if $u=1$? Do you see any practical uses of this?

