Ann
DHWY

Goals
D hammic $f .<$

- imprel.
- Bur uniqueness

D IE uniqueness.

Quien $\quad \Delta_{n}=f \in$ Poiss
$\Delta_{u}=0 \leftarrow$ Coplace
D Marmonic functions
D Overall grali explence for $1 E$.
R / F_{i} unigneness \Rightarrow exidence E oup unigue ness

$\sum_{|p| \leqslant k} \frac{\left.\partial_{x}^{p} u(\lambda)\right|_{x=c}}{\rho!}(x-c)^{\rho}$

Idea
(II) Tuylou-expad un about c
(2) Evalamake Taylor expa at x
(3) Dove.

Green's Formula

What if $\Delta v=0$ and $u=G(|y-x|)$ in Green's second identity?

$$
\int_{\Omega} u \Delta v-v \Delta u=\int_{\partial \Omega} u(\hat{n} \cdot \nabla v)-v(\hat{n} \cdot \nabla u) d s
$$

Can you write that more briefly?

$$
v(v)=\int v \delta(x \cdot y) d y=S\left(\partial_{n} v\right)-D(v)
$$

Green's Formula (Full Version)

Ω bounded
Theorem (Green's Formula [Kress LIE 2nd ed. Thm 6.5])
If $\triangle u=0$, then

$$
(S(\hat{n} \cdot \nabla u)-D u)(x)= \begin{cases}u(x) & x \in \Omega, \\ \frac{u(x)}{2} & x \in \partial \Omega, \\ 0 & x \notin \Omega\end{cases}
$$

Green's Formula and Cauchy Data
Suppose I know 'Cauchy data' $\left(\left.u\right|_{\partial \Omega},\left.\hat{n} \cdot \nabla u\right|_{\partial \Omega}\right)$ of u. What can I do?
Eu. Gran's f., compute e n.
What if Ω is an exterior domain?
??
What if $u=1$? Do you see any practical uses of this?

$$
-D 1=\underbrace{\left\{\begin{array}{cc}
1 & x \in \Omega \\
1 / n & x \in \partial \Omega \\
0 & 0+1
\end{array}\right.}_{\text {indicator function }}
$$

Mean Value Theorem
Theorem (Mean Value Theorem [Kress LIE 2nd ed. Thm 6.7])

$$
\text { If } \Delta u=0, u(x)=\int_{B(x, r)} u(y) d y=\int_{\partial B(x, r)} u(y) d y
$$

Define $\bar{\int}$?

$$
|\Omega|=\int_{\Omega} 1 d x \quad \int_{l} f(x)=\frac{1}{|\Omega|} \int f(x) d x
$$

Trace back to Green's Formula (say, in 2D):

$$
u(x)=S\left(\partial_{n} u\right) u-D_{n}(x)=\frac{1}{2 \pi} \log (d) \int_{\partial B} \partial_{n} n-\frac{1}{2 \pi r} \int_{\partial B} n .
$$

Maximum Principle

Theorem (Maximum Principle [Kress LIE 2nd ed. 6.9])

If $\triangle u=0$ on compact set $\bar{\Omega}$:
u attains its maximum on the boundary.
Suppose it were to attain its maximum somewhere inside an open set...

coutradicks moan value

What do our constructed harmonic functions (layer potentials) do there?

Green's Formula at Infinity: Statement

$\Omega \subseteq \mathbb{R}^{n}$ bounded, C^{1}, connected boundary, $\triangle u=0$ in $\mathbb{R}^{n} \backslash \Omega$, bounded
Theorem (Green's Formula in the exterior [Kress LIE 3rd ed. Thy 6.11])

$$
\left(\bar{\zeta}_{\partial \Omega}(\hat{n} \cdot \nabla u)+D_{\partial \Omega} u\right)(x)+\mathrm{PV} u_{\infty}=u(x)
$$

for some constant u_{∞}. Only for $n=2$,

$$
u_{\infty}=\frac{1}{2 \pi r} \int_{|y|=r} u(y) d s_{y} .
$$

Realize the power of this statement:
Tells us about dec ur behavior of h.f. as $x \rightarrow$.

Green's Formula at Infinity: Proof (1/4)

We will focus on \mathbb{R}^{3}. WLOG assume $0 \in \Omega$. Let $M=\|u\|_{L^{\infty}\left(\mathbb{R}^{n} \backslash \bar{\Omega}\right)}$. First, show $\|\nabla u\| \leq 6 M /\|x\|$ for $x \geq R_{0}$.

Green's Formula at Infinity: Proof (2/4)

Let $x \in \mathbb{R}^{3} \backslash \bar{\Omega}$. Let r be such that $\bar{\Omega} \subset B(x, r)$. Apply Green's formula on bounded domains to $B(x, r) \backslash \bar{\Omega}$:

$$
\left(S_{\partial \Omega}\left(\partial_{n} u\right)-D_{\partial \Omega} u\right)(x)+\left(S_{\partial B(x, r)}\left(\partial_{n} u\right)-D_{\partial B(x, r)} u\right)(x)=u(x) .
$$

Show $S_{\partial B(x, r)}\left(\partial_{n} u\right) \rightarrow 0$ as $r \rightarrow \infty$:

Green's Formula at Infinity: Proof (3/4)

It remains to bound the term

$$
\left.D_{\partial B(x, r)} u\right)(x)=\frac{4 \pi}{r^{2}} \int_{\partial B(x, r)} u(y) d S_{y} .
$$

Can we transplant that ball to the origin in some sense?

Green's Formula at Infinity: Proof (4/4)

Observe

$$
\left|\frac{4 \pi}{r^{2}} \int_{\partial B(0, r)} u(y) d S_{y}\right| \leq 4 \pi M .
$$

Consider the sequence

$$
\mu_{n}:=\frac{4 \pi}{r_{n}^{2}} \int_{\partial B\left(0, r_{n}\right)} u(y) d S_{y} .
$$

Because of its boundedness and sequential compactness of the bounding interval, out of a sequence of radii r_{n}, we can pick a subsequence so that $\left(\mu_{n(k)}\right)$ converges. Call the limit u_{∞}.

Green's Formula at Infinity: Impact

Can we use this to bound u as $x \rightarrow \infty$?
Consider the behavior of the kernel as $r \rightarrow \infty$. Focus on 3D for simplicity. (But 2D holds also.)

$$
\left.u(x)=u_{\infty}-S\left(\partial_{n} u\right)+i\right) n=O\left(\frac{1}{1}\right)
$$

How about u's derivatives?

$$
\nabla_{n}(\lambda)=0\left(\frac{1}{r^{n-1}}\right)= \begin{cases}\frac{1}{r} & 20 \\ \frac{1}{r^{2}} & 30\end{cases}
$$

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory
Singular Integrals
Green's Formula and Its Consequences
Jump Relations

Boundary Value Problems
Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Jump relations:

Jump Relations: Mathematical Statement

Let $[X]=X_{+}-X_{-}$. (Normal points towards " + "="exterior".)
Theorem (Jump Relations [Kress LIE 2nd ed. Thm. 6.14, 6.17,6.18])

$$
\begin{array}{llll}
\hline \text { "Junp }^{\text {unf }} \quad\left(x_{0} \in \partial \Omega\right) & & {[S \sigma]} & =0 \\
\lim _{x \rightarrow x_{0} \pm}\left(S^{\prime} \sigma\right)=\left(S^{\prime} \mp \frac{1}{2} I\right)(\sigma)\left(x_{0}\right) & \Rightarrow & {\left[S^{\prime} \sigma\right]} & =-\sigma \\
\lim _{x \rightarrow x_{0} \pm}(D \sigma)=\left(D \pm \frac{1}{2} I\right)(\sigma)\left(x_{0}\right) & \Rightarrow & {[D \sigma]} & =\sigma \\
& & {\left[D^{\prime} \sigma\right]=0}
\end{array}
$$

Truth in advertising: Assumptions on Γ ?

$$
\partial \Omega \in C^{2}
$$

Jump Relations: Proof Sketch for SLP

Sketch the proof for the single layer.
(follow proof for weak (y singuly \Rightarrow bonded)

Jump Relations: Proof Sketch for DLP
Sketch proof for the double layer.

$$
\begin{aligned}
& \text { Suppress } x \text { is tot point. (near (1) } \\
& x=z+h \hat{h}(z) \quad\left(z \in\left({ }^{1}\right)\right. \\
& D_{\sigma}(x)=D(\underline{(z)})+D_{\sigma}(x)+D(\gamma(z)) \\
& =\sigma(z) D_{1}+\underbrace{D[\sigma-\sigma(z)](x)} \\
& \text { As } h \rightarrow 0(\text { as } x \rightarrow z), \sigma(x) \rightarrow \sigma(z), \quad) \rightarrow 0
\end{aligned}
$$

Outline

```
Introduction
Dense Matrices and Computation
Tools for Low-Rank Linear Algebra
Rank and Smoothness
Near and Far: Separating out High-Rank Interactions
Outlook: Building a Fast PDE Solver
Going Infinite: Integral Operators and Functional Analysis
Singular Integrals and Potential Theory
Boundary Value Problems
Laplace
Helmholtz
Calderón identities
```

[^0]Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Outline

Introduction

Dense Matrices and Computation
Tools for Low-Rank Linear Âlgebra
Rank and Smoothness
Near and Far: Separating out High-Rank Interactions
Outlook: Building a Fast PDE Šolver
Going Infinite: Integral Operators and Functional Analysis
Singular Integrals and Potential Theory
Boundary Value Problems
Laplace
Helmholtz
Calderón identities

Back from Infinity: Discretization

Computing Întegrals: Approaches to Quadrature
Going General: More PDEs

Boundary Value Problems: Overview

$\Delta n=0 \quad \Delta x=0$

with $g \in C(\partial \Omega)$.
What does $f(x)=O(1)$ mean? $($ and $f(x)=o(1) ?)$

$$
\begin{array}{ll}
f(x)=O(y(x)) & \rho(x)=o(g(x)) \\
\lim \frac{f(x)}{g(x)} \in C & \lim \frac{f(x)}{g(x)}=0
\end{array}
$$

Uniqueness Proofs

Dirichlet uniqueness: why?

Neumann uniqueness: why?

[^0]: Back from Infinity: Discretization

