April 23, 2024 Announcements

· HW4 due · Projects

Goals

- N(= +0)=>pm { | {
- · ext. Dirichlet
- · Helmholtz

Review

- OVP uniquehers 's IE 'uniquenoss'

Uniqueness of Integral Equation Solutions

Theorem (Nullspaces [Kress LIE 3/d ed. Thm 6.21])

$$N(1/2 - D) = N(1/2 - S') = \{0\} \iff$$

$$N(1/2 + D) = \text{span}\{1\}, N(1/2 + S') = \text{span}\{\psi\},$$
where $\int \psi \neq 0$.
Fredholm oft:
 $(1 - A)(x) = (N(1 - A^{a}))^{-1}$
in! Neman $\Rightarrow (1/c + S')(x) \perp N(\frac{\pi}{2} + D) = \text{span}\{1\}$
exl. Dirichlet. $\Rightarrow (7/c + D)(x) \perp N(\frac{\pi}{2} + S') \approx \text{span}\{1\}$

$$\frac{1}{255}$$

IE Uniqueness: Proofs (1/3)

Show
$$N(I/2 - D) = \{0\}.$$

IE Uniqueness: Proofs (2/3)

Show $N(I/2 - S') = \{0\}.$

IE Uniqueness: Proofs (3/3)Show $N(I/2 + D) = \text{span}\{1\}$.

$$y = [D\varphi] = u^{t} - u^{t} = 0 + u^{t} = 0 + u^{t} = 0 + u^{t} = 0$$

$$y = (D\varphi] = u^{t} - u^{t} = 0 + u^$$

What conditions on the RHS do we get for int. Neumann and ext. Dirichlet?

Patching up Exterior Dirichlet
Problem:
$$N(1/2 + S') = \{\psi\}$$
... do not know ψ . Assume $0 \in \Omega$.
 $k(x_1 y) = \partial_{w_y} G(x_1 y) \longrightarrow k(x_1 y) = \partial_{x_1} G(x, y) + \frac{1}{|x|^{n-2}}$
 $u(x) = \int k(x_1 y) \sigma(y) dS_y = \int \sigma + \frac{1}{|x|^{n-2}} \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma + \frac{1}{|x|^{n-2}} \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma + \frac{1}{|x|^{n-2}} \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma + \frac{1}{|x|^{n-2}} \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma + \frac{1}{|x|^{n-2}} \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma + \frac{1}{|x|^{n-2}} \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y$
 $\cdot \int O(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y = \int \sigma(y) dS_y$
 $\cdot \int \sigma(y) dS_y = \int \sigma(y) dS$

Domains with Corners

What's the problem?

Domains with Corners (II)

At corner x_0 : (2D)

$$\lim_{x \to x_0 \pm} \int_{\partial \Omega} \hat{n} \cdot \nabla_y G(x, y) \phi(y) ds_y \pm \frac{1}{2} \frac{\langle \text{opening angle on } \pm \text{ side} \rangle}{\pi} \phi$$
Name some problems.

$$u(x) := D\sigma (x)$$

$$\lim_{x \to 0^{-1}} u(x) = D\sigma \begin{cases} -\sigma/2 \\ -\sigma \cdot \frac{1}{2} \end{cases}$$

$$\lim_{x \to 0^{-1}} u(x) = C\sigma (x)$$

Workarounds?

Numerically: Needs consideration, can drive up cost through refinement.

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Laplace Helmholtz Calderón identities

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Where does Helmholtz come from?

Derive the Helmholtz equation from the wave equation $\partial_t^2 U = c^2 \triangle U_2$, Q: What is c? $(r \rho r \sigma r) = r \sigma c \sigma c \sigma c^2 \Delta U_2$

Helmholtz vs. Yukawa

" bad"

Helmholtz Equation

- $\blacktriangleright \Delta u + k^2 u(x) = 0$
- Indefinite operator
- Oscillatory solution
- Difficult to solve, especially for large k

Yukawa Equation

- $\blacktriangleright \bigtriangleup u + k^2 u(x) = 0$
- Positive definite operator
- Smooth solutions
- 'Screened Coulomb' interaction
- Generally quite simple to solve

The prototypical Helmholtz BVP: A Scattering Problem

Ansatz:

$$u^{\text{tot}} = u + u^{\text{inc}}$$

$$\int_{\text{decays}}$$

Solve for scattered field u.

Helmholtz: Some Physics

Physical quantities:

• Velocity:
$$v = (1/
ho_0)
abla U$$

• Pressure:
$$p = -\partial_t U = i\omega u e^{-i\omega t}$$

• Equation of state:
$$p = f(\rho)$$

What's ρ_0 ?

What happens to a pressure BC as $\omega \rightarrow 0$?

Helmholtz: Boundary Conditions

Interfaces between media: What's continuous?

Sound-soft: Scatterer "gives"

- Pressure remains constant in time
- $u = f \rightarrow \text{Dirichlet}$
- Sound-hard: Scatterer "does not give"
 - Pressure varies, same on both sides of interface
 - $\widehat{n} \cdot \nabla u = 0 \rightarrow \text{Neumann}$

Impedance: Some pressure translates into motion

- Scatterer "resists"
- $\hat{n} \cdot \nabla u + ik\lambda u = 0 \rightarrow \text{Robin } (\lambda > 0)$

Sommerfeld radiation condition: allow only outgoing waves (n-dim)

$$r^{\frac{n-1}{2}}\left(\frac{\partial}{\partial r}-ik\right)u(x)\to 0$$
 $(r\to\infty)$

Many interesting BCs \rightarrow many IEs! :)