April 23, 2024
Announcements

- HW 4 due
- Projecls

Review

- OUP unigucheas () IE nnignencss"

Goals

- $N\left(\frac{1}{2}+0\right)=s p a n\{1\}$
- ext. Dirichler
- Holmholtz

Uniqueness of Integral Equation Solutions

Fradlol
Theorem (Nullspaces [Kress LIE 3.d ed. Thm 6.21])

- $N(I / 2-D)=N\left(I / 2-S^{\prime}\right)=\{0\} \leftarrow$
- $N(1 / 2+D)=\operatorname{span}\{1\}, N\left(I / 2+S^{\prime}\right)=\operatorname{span}\{\psi\}$, where $\int \psi \neq 0$.

Frelholm alt:
has to be true

$$
(1-A)(x)=\left(N\left(1-A^{A}\right)\right)
$$

int. Neman $\rightarrow\left(I / c+S^{\prime}\right)(x) \perp N\left(\frac{T}{2}+D\right)=$ span $\{B$ ext. Dirichlet. $\rightarrow(I / 2+D)(x) \perp N\left(\frac{1}{2}+S^{\prime}\right)=\operatorname{spm}\{\psi\}$ for all hammier.

IE Uniqueness: Proofs $(1 / 3)$

Show $N(I / 2-D)=\{0\}$.

$$
\begin{aligned}
& \text { (el } \underbrace{\psi}-1) \psi=0 \quad u(x):=D \psi \text {. } \\
& u \equiv 0 \text { on int. (vol) } \\
& \left(\partial_{n} u\right)=0 \\
& {\left[\partial_{n} u\right]=\left[D^{\prime} \psi\right]=0 \quad \Rightarrow\left(\partial_{n} u\right)^{+}=0} \\
& u=0 \text { on ext. (soul.) } \\
& \Rightarrow \psi=0 \text {, }
\end{aligned}
$$

IE Uniqueness: Proofs (2/3)

Show $N\left(1 / 2-S^{\prime}\right)=\{0\}$.

IE Uniqueness: Proofs (3/3)
Show $N(I / 2+D)=\operatorname{span}\{1\}$.

$$
\begin{aligned}
& { }_{n} s^{4} \text { Let } \varphi \text { set. } \underbrace{\frac{\varphi}{2}+D}_{\substack{\operatorname{lin} n}}=0 . \quad n(4)=1) \varphi(a) \Rightarrow n^{+}=0 \text {. } \\
& \Rightarrow u \equiv 0 \text { in } \quad+x \text {. (wm.) } \\
& \left(\partial_{n} n\right)^{+}=0 \Rightarrow(\partial . u)^{-}=0 \Rightarrow n E \text { cons. in int. od (. } \\
& \varphi=[D \varphi]=u^{+}-u^{-}=0-\text { cost } . \Rightarrow \varphi \in \text { spa }\{1\} \\
& \text {, } ?^{n}: V \text { because of } D_{1}
\end{aligned}
$$

What conditions on the RHS do we get for int. Neumann and ext. Dirichlet?
... (sse above)

Patching up Exterior Dirichlet
Problem: $N\left(I / 2+S^{\prime}\right)=\{\psi\} \ldots$ do not know ψ. Assume $0 \in \Omega$.

$$
\begin{aligned}
& K(x, y)=\partial_{n_{y}} G(x, y) \leadsto \tilde{K}(x, y)=\partial_{2} G(x, y)+\frac{1}{|x|^{n-2}} \\
& u(x)=\int \hat{K}(x, y) \sigma(y) d S_{y}=D 0+\frac{1}{|x|^{n-2}} \int \sigma(y) d S_{y}
\end{aligned}
$$

- Solves PDÉ, stays compact, no add'l jumps, ext. limit ok.
- ext. Dirichlet migneness $\Rightarrow n=0$ in ext. vol.

$$
\begin{aligned}
O=\left(\left.x\right|^{n-2} u(x) \rightarrow \int \sigma+O\left(\frac{1}{r}\right) \rightarrow \int \sigma \quad(\text { as } x \rightarrow \infty)\right. \\
\text { if } D \sigma=O\left(\frac{1}{r^{2}}\right) \text { in } 3 D \\
\frac{\sigma}{2}+D 0=0 \Rightarrow \sigma \in N\left(\frac{1}{2}+D\right)-\text { span }\{1\} \Rightarrow S \theta=0 .
\end{aligned}
$$

Domains with Corners

What's the problem?

Domains with Corners (II)
At corner x_{0} : (2D)

$$
\lim _{x \rightarrow x_{0} \pm}=\int_{\partial \Omega} \hat{n} \cdot \nabla_{y} G(x, y) \phi(y) d s_{y} \pm \frac{1}{2} \underbrace{\frac{\langle\text { opening angle on } \pm \text { side }\rangle}{\pi}} \phi
$$

Name some problems.

$$
\lim _{x \rightarrow 00^{-}} u(x)=D_{\sigma}\left\{\begin{array}{l}
-\sigma / 2 \\
-\sigma \cdot ? ?
\end{array} \quad \rightarrow\right. \text { not second kind?? }
$$

Workarounds?

- It bonded + compact
- C^{2}

Numerically: Needs consideration, can drive up cost through refinement.

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems
Helmholtz
Calderón identities

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Where does Helmholtz come from?
Derive the Helmholtz equation from the wave equation $\partial_{t}^{2} U=c^{2} \triangle U, . \mathrm{Q}$: What is c ?

$$
c=\text { prop speed } \quad[c]=\frac{m}{s}
$$

$$
\begin{aligned}
& U(x, t)=u(x) e^{-i \omega t} \\
& u\left(y \partial_{\epsilon}\left(e^{-i \omega t}\right)=c^{2} e^{-i \omega t} \Delta u(x)\right. \\
& u\left(y(-i \omega)^{2} e^{-i \omega t}=c^{2} e^{-i \omega t} \Delta u(x)\right. \\
& -\omega^{2} u(\lambda)=c^{2} \Delta u(x) \\
& \Delta u t \underbrace{k}_{\underbrace{\left(\frac{\omega^{2}}{c^{2}}\right)}_{\text {wave } n m b w^{2}} u(t)=0} \quad[l e]=\frac{\frac{1}{s}}{\frac{m}{s}}=\frac{1}{n}
\end{aligned}
$$

Helmholtz vs. Yukawa

$$
{ }^{n} \text { bad }{ }^{n}
$$

Helmholtz Equation

- $\triangle u+k^{2} u(x)=0$
- Indefinite operator
- Oscillatory solution
- Difficult to solve, especially for large k
${ }^{7}$ good"
Yukawa Equation
- $-\triangle u+k^{2} u(x)=0$
- Positive definite operator
- Smooth solutions
- 'Screened Coulomb' interaction
- Generally quite simple to solve

$$
\int \Delta \ln 4
$$

$$
-\Delta \text { io pos. diff, }=-S_{D U} \cdot \nabla_{\varphi} \ggg 0
$$

The prototypical Helmholtz BVP: A Scattering Problem

Ansatz:

$$
u^{\mathrm{tot}}=u+u^{\mathrm{inc}}
$$

Solve for scattered field u.

Helmholtz: Some Physics
Physical quantities:

- Velocity potential: $U(x, t)=u(x) e^{-i \omega t}$ (fix phase by e.g. taking real part)
"soundel-hared"
- Velocity: $v=\left(1 / \rho_{0}\right) \nabla U$
"sound-soff4
- Pressure: $p=-\partial_{t} U=i \omega u e^{-i \omega t}$
- Equation of state: $p=f(\rho)$

What's ρ_{0} ?
"base' dosing is $\ell_{\text {in }}$ of Euler

What happens to a pressure $B C$ as $\omega \rightarrow 0$?
"disappears"

Helmholtz: Boundary Conditions

Interfaces between media: What's continuous?

- Sound-soft: Scatterer "gives"
- Pressure remains constant in time
- $u=f \rightarrow$ Dirichlet
- Sound-hard: Scatterer "does not give"
- Pressure varies, same on both sides of interface
- $\hat{n} \cdot \nabla u=0 \rightarrow$ Neumann
- Impedance: Some pressure translates into motion
- Scatterer "resists"
- $\hat{n} \cdot \nabla u+i k \lambda u=0 \rightarrow \operatorname{Robin}(\lambda>0)$
- Sommerfeld radiation condition: allow only outgoing waves (n-dim)

$$
r^{\frac{n-1}{2}}\left(\frac{\partial}{\partial r}-i k\right) u(x) \rightarrow 0 \quad(r \rightarrow \infty)
$$

Many interesting BCs \rightarrow many IEs! :)

