April 25, 2024 Announcements

Goals

Review

Helmholtz Dun O "sound hord" ~ Neuma "sound soft" ~ Diridde Une velocity Due velocity Den = pressure

Helmholtz: Boundary Conditions

Interfaces between media: What's continuous?

267

Unchanged from Laplace

Theorem (Green's Formula [Colton/Kress IAEST Thm 2.1])

If $\triangle u + k^2 u = 0$, then

$$(S(\hat{n} \cdot \nabla u) - Du)(x) = \begin{cases} u(x) & x \in D\\ \frac{u(x)}{2} & x \in \partial D\\ 0 & x \notin D \end{cases}$$

$$[Su] = 0$$

$$\lim_{x \to x_0 \pm} (S'u) = \left(S' \mp \frac{1}{2}I\right)(u)(x_0) \qquad \Rightarrow \qquad [S'u] = -u$$

$$\lim_{x \to x_0 \pm} (Du) = \left(D \pm \frac{1}{2}I\right)(u)(x_0) \qquad \Rightarrow \qquad [Du] = u$$

$$[D'u] = 0$$

Unchanged from Laplace

Why is singular behavior (esp. jump conditions) unchanged?

$$\frac{1}{r} \rightarrow \frac{e^{ihr}}{r} = \frac{1}{r} + \frac{ihr}{rq!} + \frac{(ihr)^{t}}{r2!}$$
Why does Green's formula survive? (aplace $\int v + h^{1}v = 0$

$$\int u \Delta v - v \Delta n = \int u \partial_{1} v - v \partial_{n} n$$

$$h = 6a$$

$$\mathcal{N}(x_1 l) = u(x) e^{-l\omega l}$$

if $u \in \mathbb{R}$, oscillatos, if $u \in \mathbb{Q}_{269}$

- Su= An not - An-O or Gon = O Jon OR Resonances $-\triangle$ on a bounded (interior) domain with homogeneous Dirichlet/Neumann BCs has countably many real, positive eigenvalues. What does that have to with Helmholtz? - Du= Lu (=) Du+ lu=0 Nesonance! Si the aso Why could it cause grief? or dr countably may Helmholte, problems are non-unique.

Helmholtz: Boundary Value Problems

		init is
Find $u\in C(ar{D})$ with $ riangle u+k^2=0$ such that		Ert D S
	Dirichlet	Neumann
Int.	$\lim_{x \to \partial D^-} u(x) = g$ Ounique (-resonances)	$\lim_{x\to\partial D-}\hat{n}\cdot\nabla u(x)=g$
		unique (-resonances)
Ext.	$\lim_{x \to \partial D+} u(x) = g$ Sommerfeld	$\lim_{x\to\partial D+} \hat{n} \cdot \nabla u(x) = g$
	Sommerfeld	Sommerfeld
	🕒 unique	🕒 unique
with $g \in C(\partial D)$.		

Luphce 1, D

N

Find layer potential representations for each.

Patching up spurious resonances inherited from adjoint

Issue: Exte IE inherits non-uniqueness from 'adjoint' int. BVP.

Patching up resonances: CFIE (1/3) $\omega(\omega) = 0 \varphi - i S \varphi$

Suppose
$$\frac{1}{2} + D_{4} - iS_{4} = 0$$
. To show : $\varphi = 0$
lin $u(x) = 1$ = 0 = $u = 0$ on ext. vol.
 ∇R^{4}

Patching up resonances: CFIE (2/3)

$$\begin{array}{c} 0 \cdot (\partial_{u}u)^{T} = [\partial_{u}u] = [D_{p-i}s^{t}p] = ip \\ 0 \cdot u^{T} = [u] = [D_{p-i}sp] = p \end{array}$$

Patching up resonances: CFIE (3/3)

$$(\partial_{\mu} u)^{T} = u^{T}$$
Green's first thm: $\int u \Delta v + \nabla u \cdot \nabla v = \int u \partial_{\mu} v$

$$\int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2$$

Helmholtz Uniqueness

DS= second hilly

Uniqueness for remaining IEs similar:

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Laplace Helmholtz Calderón identities

Back from Infinity: Discretization

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

D' is Self-Adjoint

Show that D' is self-adjoint. [Kress LIE 3rd ed. Sec 7.6]

To show:
$$(D'Y_{1}Y) = (P, D'Y)$$

 $u := DP$ $v := DY$
Green's second Jhm: $(int. and ext.!)$
 $\int_{\partial x} (\partial_{u}u) v = \int u(\partial_{u}v)$
 $(D'P_{1}Y) = (\partial_{u}u_{1}(V))_{\partial x} = (\partial_{u}u_{1}v^{t} - v^{t})$
 $= (u^{t}_{1}(\partial_{u}v)^{t}) - (u^{t}_{1}(\partial_{u}v)^{-})$
 $= (Cu_{1}^{t}\partial_{u}v) = (P_{1}^{t}D^{t})$

Towards Calderón

Show that $(Sarphi,D'\psi)=((S'+I/2)arphi,(D-I/2)\psi).$ [Kress LIE 3rd ed. Sec 7.6]

 $(\varphi, SD'\psi)?$

Calderón Identities: Summary

►
$$SD' = D^2 - 1/4$$

► $D'S = S'^2 - 1/4$

Also valid for Laplace (jump relation same after all!)

.

ST

Why do we care?

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

r and Ear. Separating out High Pank Interactions

1

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Fundamentals: Meshes, Functions, and Approximation Integral Equation Discretizations Integral Equation Discretizations: Nyström Integral Equation Discretizations: Projection

Computing Integrals: Approaches to Quadrature

Going General: More PDEs