April 25, 2024
Announcements

Goals

Review
Helmholtz

$$
\begin{aligned}
& \text { "sound hard" } \leadsto \partial_{n} n=0 \\
& \text { Hemmer } \\
& \text { sound soft" } \leadsto \begin{array}{c}
\text { Diridled } \\
\\
\text { neg }
\end{array} \\
& \square n=\text { velocity } \\
& -\partial_{t} n=\text { pressure }
\end{aligned}
$$

Helmholtz: Boundary Conditions

Interfaces between media: What's continuous?
normed Velocity, pressure

- Sound-soft: Scatterer "gives"
- Pressure remains constant in time

$$
u_{t t}=u_{x t}
$$

- $u=f \rightarrow$ Dirichlet
- Sound-hard: Scatterer "does not give"
adv. to the night
- Pressure varies, same on both sides of interface
$\rightarrow \hat{n} \cdot \nabla u=0 \rightarrow$ Neumann

$$
{ }^{2}\left(\partial_{r}+\partial_{t}\right)_{4}^{\text {toward/ }}
$$

- Impedance: Some pressure translates into motion
- Scatterer "resists"
- $\hat{n} \cdot \nabla u+i k \lambda u=0 \rightarrow \operatorname{Robin}(\lambda>0)$
- Sommerfeld radiation condition: allow only outgoing waves (n-dim)

$$
r^{\frac{n-1}{2}}\left(\frac{\partial}{\partial r}-i k\right) u(x) \rightarrow 0 \quad(r \rightarrow \infty)
$$

Many interesting BC \rightarrow many lIEs! :)

Unchanged from Laplace

Theorem (Green's Formula [Colton/Kress IAEST Thm 2.1])
If $\triangle u+k^{2} u=0$, then

$$
(S(\hat{n} \cdot \nabla u)-D u)(x)= \begin{cases}u(x) & x \in D \\ \frac{u(x)}{2} & x \in \partial D \\ 0 & x \notin D\end{cases}
$$

$[S u]=0$

$$
\begin{aligned}
\lim _{x \rightarrow x_{0} \pm}\left(S^{\prime} u\right)=\left(S^{\prime} \mp \frac{1}{2} I\right)(u)\left(x_{0}\right) & \Rightarrow & {\left[S^{\prime} u\right] } & =-u \\
\lim _{x \rightarrow x_{0} \pm}(D u)=\left(D \pm \frac{1}{2} I\right)(u)\left(x_{0}\right) & \Rightarrow & {[D u] } & =u \\
& & {\left[D^{\prime} u\right] } & =0
\end{aligned}
$$

Unchanged from Laplace

Why is singular behavior (esp. jump conditions) unchanged?
$\frac{1}{r} \rightarrow \frac{e^{i k_{r}}}{v}=\frac{1}{v}+\frac{i h_{r}}{r_{1!}}+\frac{(\operatorname{lh} r)^{r}}{2!}+\cdots$

Why does Green's formula survive?

$$
\int u \Delta v-v \Delta n=\int u \partial_{n} v-v \partial_{n} n
$$

$$
u(x, 1)=u(x) e^{-i \omega t}
$$

if $\omega \in \mathbb{R}$, oscillates. if $\omega \in \mathbb{C}$

Resonances

$$
\left.\begin{array}{rl}
-\Delta u=\lambda n \\
o r & n=0 \\
\partial_{h} n & =0
\end{array}\right\} \text { on } \partial \Omega
$$

$-\triangle$ on a bounded (interior) domain with homogeneous Dirichlet/Neumann Cs has countably many real, positive eigenvalues.
What does that have to with Helmholtz?

$$
\begin{aligned}
& -\Delta n=\lambda n \Leftrightarrow \Delta n+\lambda n=0 \\
& \text { resonance! } \Delta u+k^{2} n=0
\end{aligned}
$$

Why could it cause grief?

$$
\Delta n+h^{2} n \neq 0
$$

$n=g$ or $\partial \Omega$
countably man helmholtz $\hat{1}$
problems are nou-unigue.

Helmholtz: Boundary Value Problems

Find $u \in C(\bar{D})$ with $\Delta u+k^{2}=0$ such that | Cuphuce: | D | N |
| ---: | ---: | ---: |
| $\ln t$ | D | S |
| $E \in r$ | D | S |

	Dirichlet
Int.	$\lim _{x \rightarrow \partial D-} u(x)=g$
	O unique $(-$ resonant
Ext.	$\lim _{x \rightarrow \partial D+u(x)=g}$
	Sommerfeld © unique

Neumann

 $\lim _{x \rightarrow \partial D-} \hat{n} \cdot \nabla u(x)=g$© unique (-resonances)
with $g \in C(\partial D)$.
$\lim _{x \rightarrow \partial D+} \hat{n} \cdot \nabla u(x)=g$
Sommerfeld
© unique

Find layer potential representations for each.

Patching up spurious resonances inherited from adjoint

Issue: Exte IE inherits non-uniqueness from 'adjoint' int. BVP.
Ext. Dirichlet.

$$
n(t):=D_{\varphi}-i \alpha S_{\varphi}
$$

Combined Field IE "CFIE". $\alpha=1, \quad \alpha \sim k$ better for high freq.

Patching up resonances: CFIE (1/3)

$$
\alpha=-1
$$

$$
I E: \frac{\varphi}{2}+D_{\varphi}-i S_{\varphi}=q
$$

Suppose $\frac{\varphi}{2}+D_{4}-i S_{\varphi}=0$. Voshow: $\varphi=0$

$$
\lim _{\partial \Omega^{+}} u(x)=1=0 \quad \Rightarrow u=0 \text { on ext. vol. }
$$

Patching up resonances: CFIE (2/3)

Patching up resonances: CFIE (3/3)

$$
-i\left(\partial_{n} n\right)^{-}=n^{-}
$$

Green's first thm: $\int_{\substack{-7 \\ v=u}} n \Delta v+\nabla_{n} \cdot \nabla_{v}=\int_{\partial} u O_{n} v$

$$
\begin{aligned}
& =-i \int_{\partial \Omega}|u|^{2} \\
& \int_{\partial \Omega}\left|u^{-}\right|^{2}=0 \Rightarrow u^{-}=0 \text {. } \\
& u(t):=D_{\varphi-1} S_{\varphi} \\
& O=u^{+}-u^{-}=[u]=\varphi=0 \text {. }
\end{aligned}
$$

Helmholtz Uniqueness

$$
D^{\prime} s=\text { second hin }
$$

Uniqueness for remaining lIEs similar:

$$
\begin{array}{r}
\text { ext. Nenuren } u\left(V^{\prime}:=S_{\varphi}-i D \varphi\right. \\
\left(\partial_{n} u\right)^{+}= \pm \frac{\varphi}{2}+S_{\varphi}^{\prime}-i D^{\prime} \varphi \\
\varphi=S \psi
\end{array}
$$

Outline

```
Introduction
Dense Matrices and Computation
Tools for Low-Rank Linear Algebra
Rank and Smoothness
Near and Far: Separating out High-Rank Interactions
Outlook: Building a Fast PDE Solver
Going Infinite: Integral Operators and Functional Analysis
Singular Integrals and Potential Theory
Boundary Value Problems
    Laplace
    Helmholtz
    Calderón identities
```

[^0]Computing Integrals: Approaches to Quadrature

Going General: More PDEs
D^{\prime} is Self-Adjoint
Show that D^{\prime} is self-adjoint. [Kress LIE 3rd ed. Sec 7.6]
To show: $\left(D_{4}^{\prime}, \psi\right)=\left(\varphi, D^{\prime} \psi\right)$

$$
u:=D \varphi \quad v:=D \psi
$$

Green's second Shr: (int. and ext!!)

$$
\begin{aligned}
& \int_{\partial_{\Omega}}\left(\partial_{n} u\right) v=\int u\left(\partial_{n} v\right) \\
\left(D^{\prime} \varphi, v\right)= & \left(\partial_{n} n,(v]\right)_{\partial_{\Omega}}=\left(\partial_{n} u, v^{+}-v^{-}\right) \\
= & \left(n^{+},\left(\partial_{n} v\right)^{4}\right)-\left(n^{-},\left(\partial_{n} v\right)^{-}\right) \\
= & \left.(C u)_{1} \partial_{n} v\right)=\left(\varphi, D^{\prime}\right)
\end{aligned}
$$

Towards Calderón

Show that $\left(S \varphi, D^{\prime} \psi\right)=\left(\left(S^{\prime}+I / 2\right) \varphi,(D-I / 2) \psi\right)$. [Kress LIE 3rd ed. Sec 7.6]
$\left(\varphi, S D^{\prime} \psi\right)$?

Calderón Identities: Summary

ST

- $S D^{\prime}=D^{2}-1 / 4$
- $D^{\prime} S=S^{\prime 2}-1 / 4$

Also valid for Laplace (jump relation same after all!)
Why do we care?

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

1

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization
Fundamentals: Meshes, Functions, and Approximation
Integral Equation Discretizations
Integral Equation Discretizations: Nyström
Integral Equation Discretizations: Projection

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

[^0]: Back from Infinity: Discretization

