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Helmholtz: Boundary Conditions
Interfaces between media: What’s continuous?

▶ Sound-soft: Scatterer “gives”
▶ Pressure remains constant in time
▶ u = f → Dirichlet

▶ Sound-hard: Scatterer “does not give”
▶ Pressure varies, same on both sides of interface
▶ n̂ ·∇u = 0 → Neumann

▶ Impedance: Some pressure translates into motion
▶ Scatterer “resists”
▶ n̂ ·∇u + ikλu = 0 → Robin (λ > 0)

▶ Sommerfeld radiation condition: allow only outgoing waves (n-dim)
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Unchanged from Laplace
Theorem (Green’s Formula [Colton/Kress IAEST Thm 2.1])

If △u + k2u = 0, then

(S(n̂ ·∇u)− Du)(x) =
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Unchanged from Laplace

Why is singular behavior (esp. jump conditions) unchanged?

Why does Green’s formula survive?
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Resonances

−△ on a bounded (interior) domain with homogeneous Dirichlet/Neumann
BCs has countably many real, positive eigenvalues.
What does that have to with Helmholtz?

Why could it cause grief?
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Helmholtz: Boundary Value Problems

Find u ∈ C (D̄) with △u + k2 = 0 such that
Dirichlet Neumann

Int. limx→∂D− u(x) = g
o unique (−resonances)

limx→∂D− n̂ ·∇u(x) = g
o unique (−resonances)

Ext. limx→∂D+ u(x) = g
Sommerfeld
+ unique

limx→∂D+ n̂ ·∇u(x) = g
Sommerfeld
+ unique

with g ∈ C (∂D).

Find layer potential representations for each.
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Patching up spurious resonances inherited from adjoint

Issue: Exte IE inherits non-uniqueness from ‘adjoint’ int. BVP.
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Patching up resonances: CFIE (1/3)
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Patching up resonances: CFIE (2/3)

274



Patching up resonances: CFIE (3/3)
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Helmholtz Uniqueness

Uniqueness for remaining IEs similar:
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D ′ is Self-Adjoint
Show that D ′ is self-adjoint. [Kress LIE 3rd ed. Sec 7.6]
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Towards Calderón
Show that (Sφ,D ′ψ) = ((S ′ + I/2)φ, (D − I/2)ψ). [Kress LIE 3rd ed. Sec 7.6]

(φ, SD ′ψ)?
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Calderón Identities: Summary

▶ SD ′ = D2 − I/4
▶ D ′S = S ′2 − I/4

Also valid for Laplace (jump relation same after all!)

Why do we care?
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