April 30, 2024
Announcements

- Pres. day

Goals

- prove Calderón
- discretizatin

4 Galerhin LS Nystron

Review

- CFIE

Dinichles: D-is
Nenman: $5: i D$
exl. Neman:

Fix repr. S-iDS

$$
S^{\prime} \varphi-\frac{\varphi}{2}-i D^{\prime} S_{\varphi}
$$

$$
D^{\prime} S=D^{2}-\frac{1}{4}
$$

Towards Calderón
Show that $\left(S \varphi, D^{\prime} \psi\right)=\left(\left(S^{\prime}+I / 2\right) \varphi,(D-I / 2) \psi\right)$. [Cress LIE 3rd ed. Sec 7.6]

$$
\begin{aligned}
& w:-S \varphi \quad v:=D \psi \\
& \left(S_{\varphi}, D^{\prime} \psi\right)_{\partial \Omega}=\left(w, \partial_{n} v\right)_{\partial \Omega}=\left(\partial_{n} \omega_{1} v^{-}\right)_{\partial \Omega}=\left(\left(S^{\prime}+\frac{T}{2}\right) \varphi,\left(D-\frac{r}{2}\right) \psi\right)
\end{aligned}
$$

$\left(\varphi, S D^{\prime} \psi\right)$?

$$
\begin{aligned}
\left(\varphi, S D^{\prime} \psi\right) & =\left(S \psi, D^{\prime} \psi\right) \\
& =\left(\left(S^{\prime}+\frac{T}{2}\right) \varphi,\left(D-\frac{1}{2}\right) \psi\right) \\
& =\left(\varphi,\left(D+\frac{1}{2}\right)\left(D \cdot \frac{1}{2}\right) \psi\right) \\
& =\left(\varphi,\left(D^{2}-\frac{t}{4}\right) \psi\right)
\end{aligned}
$$

Calderón Identities: Summary

- $S D^{\prime}=D^{2}-1 / 4$
- $D^{\prime} S=S^{\prime 2}-1 / 4$

Also valid for Laplace (jump relation same after all!)
Why do we care?
Cit Neman

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization
Fundamentals: Meshes, Functions, and Approximation
Integral Equation Discretizations
Integral Equation Discretizations: Nyström
Integral Equation Discretizations: Projection

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization
Fundamentals: Meshes, Functions, and Approximation
Integral Equation Discretizations
Integral Equation. Discretizations: Nyström
Integral Equation Discretizations: Projection

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Numerics: What do we need?

- Discretize curves and surfaces
- Interpolation
- Grid management
- Adaptivity
- Discretize densities
- Discretize integral equations
- Nyström, Collocation, Galerkin
- Compute integrals on them
- "Smooth" quadrature
- Singular quadrature
- Solve linear systems

Why high order?

Order p : Error bounded as $\left|u_{h}-u\right| \leq C h^{p}$ Thought experiment:

First order	Fifth order
1,000 Dols $\approx 1,000$ triangles	1,000 DoFs ≈ 66
Error: 0.1	Error: 0.1
Error: $0.01 \rightarrow ?$	Error: $0.01 \rightarrow$?

Complete the table.

$$
\begin{aligned}
& E(h) \simeq C \cdot h \\
& 100 \times \text { the triangles }=100 h
\end{aligned}\left\{\begin{array}{l}
E(L)=C \cdot h^{5} \\
C 4 \times
\end{array}\right.
$$

Remarks:

- Want $p \geq 3$ available.
- Assumption: Solution sufficiently smooth
- Ideally: p chosen by user

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions
Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems
Back from Infinity: Discretization
Fundamentals: Meshes, Functions, and Approximation Integral Equation Discretizations
Integral Equation Discretizations: Nyström
Integral Equation Discretizations: Projection
Computing Integrals: Approaches to Quadrature
Going General: More PDEs

Integral Equation Discretizations: Overview

$$
\phi(x)-\int_{\Gamma} K(x, y) \phi(y) d y=f(y)
$$

Nyström

Projection

- Approximate integral by quadrature:

$$
\int_{\Gamma} f(y) d y \rightarrow \sum_{k=1}^{n} \omega_{k} f\left(y_{k}\right)
$$

- Evaluate quadrature'd IE at quadrature nodes, solve
- Consider residual: $R:=\phi-A \phi-f$
- Pick projection P_{n} onto finite-dimensional subspace
$P_{n} \phi:=\sum_{k=1}^{n}\left\langle\phi, v_{k}\right\rangle w_{k} \rightarrow$ DOFs $\left\langle\phi, v_{k}\right\rangle$
- Solve $P_{n} R=0$

Projection/Galerkin

- Equivalent to projection: Test IE with test functions
- Important in projection methods: sub-space (e.g. of $C(\Gamma)$)

Name some generic discrete projection bases.

- Galculin (test = trial)
- Collocation (test = δ)
- Pehrov. Galorhir (test+Wied)

Collocation and Nyström: the same?
no
Are projection methods implementable?
not honestly

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization
Fundamentals: Meshes, Functions, and Approximation
Integral Equation Discretizations
Integral Equation Discretizations: Nyström
Integral Equation Discretizations: Projection

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Nyström Discretizations (1/4)

Nyström consists of two distinct steps:

1. Approximate integral by quadrature:

$$
\begin{equation*}
\varphi_{n}(x)-\sum_{k=1}^{n} \omega_{k} K\left(x, y_{k}\right) \varphi_{n}\left(y_{k}\right)=f(x) \tag{1}
\end{equation*}
$$

2. Evaluate quadrature'd IE at quadrature nodes, solve discrete system

$$
\begin{equation*}
\varphi_{j}^{(n)}-\sum_{k=1}^{n} \omega_{k} K\left(x_{j}, y_{k}\right) \varphi_{k}^{(n)}=f\left(x_{j}\right) \tag{2}
\end{equation*}
$$

with $x_{j}=y_{j}$ and $\varphi_{j}^{(n)}=\varphi_{n}\left(x_{j}\right)=\varphi_{n}\left(y_{j}\right)$
Is version (1) solvable?
no, too may rows

Nyström Discretizations (2/4)
What's special about (2)?

Solvable $/$ no cont. density:
Solution density also only known at point values. But: can get approximate continuous density. How?

$$
\begin{aligned}
\varphi \sim A_{y}=f \quad & \Leftrightarrow \quad \varphi(x=f(x+A \varphi(x) \\
& \text { Nystronm interpolation }
\end{aligned}
$$

Assuming the IE comes from a BVP. Do we also only get the BVP solution at discrete points?
con evil at any target.

Nyström Discretizations (3/4)

Does $(1) \Rightarrow(2)$ hold?
\square
Does $(2) \Rightarrow(1)$ hold?
with $\varphi_{n}=$ The Neystrom interpolant, yos!

Nyström Discretizations (4/4)

What good does that do us?

Does Nyström work for first-kind LEs?

no.

Convergence for Nyström (1/2)

Increase number of quadrature points n :
Get sequence $\left(A_{n}\right)$
Want $A_{n} \rightarrow A$ in some sense
What senses of convergence are there for sequences of functions f_{n} ?

- pointwise
- uniform, url. $\|\cdot\|_{\infty}$
- after others

$$
\begin{aligned}
& \left\|\rho_{n}-g\right\|_{\infty}>0 \\
& f_{n}(x) x^{n} \\
& \rightarrow[0,1]
\end{aligned}
$$

What senses of convergence are there for sequences of operators A_{n} ?
$\begin{array}{lll}\text { - "pointwisé } & n A_{n} \varphi-A \varphi \| \rightarrow 0 & \forall e . \\ \text { - uniton } & \left\|A_{n}-A\right\|_{\infty} \rightarrow 0 & \end{array}$

Convergence for Nyström (2/2)
Will we get norm convergence $\left\|A_{n}-A\right\|_{\infty} \rightarrow 0$ for Nyström? [Kress LIE 3rd ed. Thm. 12.8]
$\psi_{\varepsilon}=1$ nem ean quad poit, O othomice

- $\left\|A_{n} \varphi \psi_{2}-A_{\varphi} \psi_{2}\right\| \rightarrow 0$
- $\left\|A_{n}-A\right\|_{\infty} \geqslant\|A\|_{\infty}$

Is functionwise convergence good enough?
no.

Compactness-Based Convergence

X Banach space (think: of functions)
Theorem (Not-quite-norm convergence [Kress LIE and ed. Cor 10.4])
$A_{n}: X \rightarrow X$ bounded linear operators, functionwise convergent to $A: X \rightarrow X$
Then convergence is uniform on compact subsets $U \subset X$, ie.

$$
\sup _{\phi \in U}\left\|A_{n} \phi-A \phi\right\| \rightarrow 0 \quad(n \rightarrow \infty)
$$

How is this different from norm convergence?
U cannot be the unit hall.

Collective Compactness

Set \mathcal{A} of operators $A: X \rightarrow X$

Definition (Collectively compact)

\mathcal{A} is called collectively compact if and only if for $U \subset X$ bounded, $\mathcal{A}(U)$ is relatively compact.

What was relative compactness (=precompactness)?

Collective Compactness: Questions (1/2)

Is each operator in the set \mathcal{A} compact?

Is collective compactness the same as "every operator in \mathcal{A} is compact"?

Collective Compactness: Questions (2/2)

When is a sequence collectively compact?

Is the limit operator of such a sequence compact?

How can we use the two together?

Making use of Collective Compactness

X Banach space, $A_{n}: X \rightarrow X,\left(A_{n}\right)$ collectively compact, $A_{n} \rightarrow A$ functionwise.

Corollary (Post-compact convergence [Kress LIE 3rd ed. Cor 10.11])

- $\left\|\left(A_{n}-A\right) A\right\| \rightarrow 0$
- $\left\|\left(A_{n}-A\right) A_{n}\right\| \rightarrow 0$
$(n \rightarrow \infty)^{n}$

Anselone's Theorem

 $(I-A)^{-1}$ exists, with $A: X \rightarrow X$ compact, $\left(A_{n}\right): X \rightarrow X$ collectively compact and $A_{n} \rightarrow A$ functionwise.
Theorem (Nyström error estimate [Kris LIE 3 rd ed. Tho 10.12])

For sufficiently large $n,\left(I-A_{n}\right)$ is invertible and

$$
\left\|\phi_{n}-\phi\right\| \leq C\left(\left\|\left(\underline{A_{n}-A}\right) \phi\right\|+\left\|f_{n}-f\right\|\right)
$$

$$
C=\frac{1+\left\|(I-A)^{-1} A_{n}\right\|}{1-\left\|(I-A)^{-1}\left(A_{n}-A\right) A_{n}\right\|}
$$

$$
I+(1-A)^{-1} \underset{\sim}{A}=? \quad(1-A)^{4}
$$

$$
1+\frac{a}{1-a}=\frac{1-a}{1-a}+\frac{a}{1-a}=\frac{1}{1-a}
$$

Anselone's Theorem: Proof (I)

Define approximate inverse $B_{n}=I+(I-A)^{-1} A_{n}$. How good of an inverse is it?

$$
\begin{aligned}
\text { Id } & \approx ? B_{n}\left(I-A_{n}\right) \\
& =\left(I+(I-A)^{-1} A_{n}\right)\left(I-A_{n}\right) \\
& =\left[I+(I-A)^{-1} A_{n}\right]-\left[A_{n}+(I-A)^{-1} A_{n} A_{n}\right] \\
& =\left[I+(I-A)^{-1} A_{n}\right]-\left[(I-A)^{-1}(I-A) A_{n}+(I-A)^{-1} A_{n} A_{n}\right] \\
& =\left[I+(I-A)^{-1} A_{n}\right]-\left[(I-A)^{-1} I A_{n}-(I-A)^{-1} A A_{n}+(I-A)^{-1} A_{n} A_{n}\right] \\
& =I+(I-A)^{-1} A A_{n}-(I-A)^{-1} A_{n} A_{n} \\
& =I+\underbrace{(I-A)^{-1}\left(A-A_{n}\right) A_{n}}_{-S_{n}}=I-S_{n}
\end{aligned}
$$

Anselone's Theorem: Proof (II)
Want $S_{n} \rightarrow 0$ somehow. Prior result gives us $\left\|\left(A-A_{n}\right) A_{n}\right\| \rightarrow 0$.

$$
\begin{aligned}
& \left\|S_{n}\right\| \rightarrow 0 \\
& \left(1-S_{n}\right)^{-1} \text { exists.... } \\
& B_{n}\left(1-A_{n}\right)=1-S_{n} \\
& \left(1-A_{n}\right)^{-1}=\left(1-S_{n}\right)^{-1} B_{n} \\
& \prod_{\text {exists! }}
\end{aligned}
$$

Anselone's Theorem: Proof (III)

