April 30, 2024 Announcements

Goals

Review

· CFIE Dinchler : ~ D-is Neuman : 5.iD ext. Neman: S'p - i D'p - y Z Fix repr. S-iDS 5'p - = -iD'Sx D'S = D2 - 1

Towards Calderón

Show that $(Sarphi,D'\psi)=((S'+I/2)arphi,(D-I/2)\psi).$ [Kress LIE 3rd ed. Sec 7.6]

$$\begin{array}{ccc} \omega_{1} - S \psi & \forall i = D \psi \\ \left(S \psi_{1}, D' \psi \right)_{\partial \overline{\mathcal{L}}} \left(u_{1}, \frac{\partial_{\mu} \psi}{\partial v} \right)_{\partial \overline{\mathcal{L}}} \left(\partial_{\mu} u_{1}^{-} \sqrt{-} \right)_{\partial \overline{\mathcal{L}}} = \left(\left(S' + \frac{1}{2} \right) \psi_{1}, \left(\overline{D} - \frac{1}{2} \right) \psi \right) \end{array}$$

 $(\varphi, SD'\psi)?$

$$(*, SO' +) = (S*, D' +)$$

$$\stackrel{=}{=} ((S' + \frac{1}{2})*, (D - \frac{1}{2})*)$$

$$\stackrel{=}{=} (*, (D + \frac{1}{2}) (D - \frac{1}{2}) +)$$

$$\stackrel{=}{=} (*, (D^{2} - \frac{1}{4}) +)$$

Calderón Identities: Summary

►
$$SD' = D^2 - I/4$$

$$D'S = S'^2 - I/4$$

Also valid for Laplace (jump relation same after all!)

Why do we care?

CEIE Nomen

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Fundamentals: Meshes, Functions, and Approximation Integral Equation Discretizations Integral Equation Discretizations: Nyström Integral Equation Discretizations: Projection

Computing Integrals: Approaches to Quadrature

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization

Fundamentals: Meshes, Functions, and Approximation Integral Equation Discretizations Integral Equation Discretizations: Nyström Integral Equation Discretizations: Projection

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Numerics: What do we need?

- Discretize curves and surfaces
 - Interpolation
 - Grid management
 - Adaptivity
- Discretize densities
- Discretize integral equations
 - Nyström, Collocation, Galerkin
- Compute integrals on them provide the provident of the
 - "Smooth" quadrature
 - Singular quadrature
- Solve linear systems

Why high order?

Order p: Error bounded as $|u_h - u| \leq Ch^p$ Thought experiment:

Fifth order
1,000 DoFs $pprox$ 66 triangles
Error: 0.1
Error: $0.01 \rightarrow ?$

Complete the table.

$$e(h) \simeq C \cdot h$$

 $100 \times 1he triangles = 100h$ $C 4 \times 100h$

Remarks:

- Want $p \ge 3$ available.
- Assumption: Solution sufficiently smooth
- Ideally: p chosen by user

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization Fundamentals: Mesles, Functions, and Approximation Integral Equation Discretizations Integral Equation Discretizations: Nyström Integral Equation Discretizations: Projection

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Integral Equation Discretizations: Overview

$$\phi(x) - \int_{\Gamma} K(x, y) \phi(y) dy = f(y)$$

Nyström

 Approximate integral by quadrature:

 $\int_{\Gamma} f(y) dy \to \sum_{k=1}^{n} \omega_k f(y_k)$

 Evaluate quadrature'd IE at quadrature nodes, solve Projection

- Consider residual: $R := \phi - A\phi - f$
- ► Pick projection P_n onto finite-dimensional subspace $P_n \phi := \sum_{k=1}^n \langle \phi, v_k \rangle w_k \rightarrow$ DOFs $\langle \phi, v_k \rangle$

Solve
$$P_n R = 0$$

Projection/Galerkin

► Equivalent to projection: Test IE with test functions

► Important in projection methods: *sub*-space (e.g. of $C(\Gamma)$) Name some generic discrete projection bases.

Collocation and Nyström: the same?

ND

Are projection methods implementable?

Outline

Introduction

Dense Matrices and Computation

Tools for Low-Rank Linear Algebra

Rank and Smoothness

Near and Far: Separating out High-Rank Interactions

Outlook: Building a Fast PDE Solver

Going Infinite: Integral Operators and Functional Analysis

Singular Integrals and Potential Theory

Boundary Value Problems

Back from Infinity: Discretization Fundamentals: Meshes, Functions, and Approximation Integral Equation Discretizations Integral Equation Discretizations: Nyström Integral Equation Discretizations: Projection

Computing Integrals: Approaches to Quadrature

Going General: More PDEs

Nyström Discretizations (1/4)

Nyström consists of two distinct steps:

1. Approximate integral by quadrature:

$$\varphi_n(x) - \sum_{k=1}^n \omega_k \mathcal{K}(x, y_k) \varphi_n(y_k) = f(x)$$
(1)

2. Evaluate quadrature'd IE at quadrature nodes, solve discrete system

$$\varphi_{j}^{(n)} - \sum_{k=1}^{n} \omega_{k} \mathcal{K}(x_{j}, y_{k}) \varphi_{k}^{(n)} = f(x_{j})$$
with $x_{j} = y_{j}$ and $\varphi_{j}^{(n)} = \varphi_{n}(x_{j}) = \varphi_{n}(y_{j})$
s version (1) solvable?
$$(2)$$

Nyström Discretizations (2/4)

What's special about (2)?

Solution density also only known at point values. But: can get approximate continuous density. How?

Assuming the IE comes from a BVP. Do we also only get the BVP solution at discrete points?

Nyström Discretizations (3/4)

Does (1) \Rightarrow (2) hold?

Does (2) \Rightarrow (1) hold?

with
$$\varphi_n =$$
 the Nyström interpolonit,
yes!

Nyström Discretizations (4/4)

What good does that do us?

Does Nyström work for first-kind IEs?

Convergence for Nyström (1/2)

Increase number of quadrature points *n*: Get sequence (A_n) Want $A_n \rightarrow A$ in some sense What senses of convergence are there for sequences of functions f_n ?

What senses of convergence are there for sequences of operators A_n ?

• pointwise
$$h A_{\mu} - A e \rightarrow 0$$
 $\forall e$,
• uniton $h A_{\mu} - A f_{\mu} \rightarrow 0$

Convergence for Nyström (2/2)

Will we get norm convergence $\|A_n - A\|_{\infty} \to 0$ for Nyström? [Kress LIE 3rd ed. Thm. 12.8]

$$V_{z} = 1$$
 near can grad point, O otherwise
 $II A_{n} e_{v_{z}} - A e_{v_{z}} || \rightarrow 0$
 $II A_{n} - A ||_{\infty} \ge ||A||_{\alpha}$

Is functionwise convergence good enough?

Compactness-Based Convergence

X Banach space (think: of functions)

Theorem (Not-quite-norm convergence [Kress LIE 2nd ed. Cor 10.4])

 $A_n : X \to X$ bounded linear operators, functionwise convergent to $A : X \to X$ Then convergence is uniform on compact subsets $U \subset X$, i.e.

$$\sup_{\phi \in U} \|A_n \phi - A \phi\| \to 0 \qquad (n \to \infty)$$

How is this different from norm convergence?

Collective Compactness

Set \mathcal{A} of operators $A: X \to X$

Definition (Collectively compact)

 \mathcal{A} is called *collectively compact* if and only if for $U \subset X$ bounded, $\mathcal{A}(U)$ is relatively compact.

What was relative compactness (=precompactness)?

Collective Compactness: Questions (1/2)

Is each operator in the set \mathcal{A} compact?

Is collective compactness the same as "every operator in $\mathcal A$ is compact"?

Collective Compactness: Questions (2/2)

When is a sequence collectively compact?

Is the limit operator of such a sequence compact?

How can we use the two together?

Making use of Collective Compactness

X Banach space,
$$A_n : X \to X$$
, (A_n) collectively compact, $A_n \to A$ functionwise.

Corollary (Post-compact convergence [Kress LIE 3rd ed. Cor 10.11])

$$||(A_n - A)A|| \to 0 ||(A_n - A)A_n|| \to 0 (n \to \infty)$$

Anselone's Theorem $(I - A) \neq = f$ $(I - A)^{-1}$ exists, with $A : X \to X$ compact, $(A_n) : X \to X$ collectively compact and $A_n \to A$ functionwise.

Theorem (Nyström error estimate [Kress LIE 3rd ed. Thm 10.12])

For sufficiently large n, $(I - A_n)$ is invertible and

$$\|\phi_n - \phi\| \leq C(\|(\underline{A_n - A})\phi\| + \|\underline{f_n - f}\|)$$

$$C = \frac{1 + \|(I - A)^{-1}A_n\|}{1 - \|(I - A)^{-1}(A_n - A)A_n\|}$$

$$I + (I - A)^{-1}A = ? \quad (I - A)^{-1}$$

$$1 + \frac{\alpha_1}{1-\alpha_1} = \frac{1-\alpha_1}{1-\alpha_1} + \frac{\alpha_1}{1-\alpha_2} = \frac{1}{1-\alpha_1}$$

Anselone's Theorem: Proof (I)

Define approximate inverse $B_n = I + (I - A)^{-1}A_n$. How good of an inverse is it?

$$\begin{aligned} \mathsf{Id} &\approx^{?} & B_{n}(I-A_{n}) \\ &= & (I+(I-A)^{-1}A_{n})(I-A_{n}) \\ &= & [I+(I-A)^{-1}A_{n}] - [A_{n}+(I-A)^{-1}A_{n}A_{n}] \\ &= & [I+(I-A)^{-1}A_{n}] - [(I-A)^{-1}(I-A)A_{n}+(I-A)^{-1}A_{n}A_{n}] \\ &= & [I+(I-A)^{-1}A_{n}] - [(I-A)^{-1}IA_{n}-(I-A)^{-1}AA_{n}+(I-A)^{-1}A_{n}A_{n}] \\ &= & I+(I-A)^{-1}AA_{n}-(I-A)^{-1}A_{n}A_{n} \\ &= & I+\underbrace{(I-A)^{-1}(A-A_{n})A_{n}}_{-S_{n}} = I-S_{n} \end{aligned}$$

Anselone's Theorem: Proof (II)

Want $S_n \to 0$ somehow. Prior result gives us $||(A - A_n)A_n|| \to 0$.

Anselone's Theorem: Proof (III)