April 18, 2024 Announcements

· HUY due

Goals

- · rev. jump rels
- · BVP un igneness
- · draft of repr. choice
- show IE uniqueness for all 4 BVPs w/ patch axt. Phichlet
 corners?
 Helmholtz

Review

- · Jun p relations
- BVP umigneness • Дп-0

u(x) = So(x)

Jump Relations: Mathematical Statement Let $[X] = X_{+} - X_{-}$. (Normal points towards "+"="exterior".) Let $x_0 \in \Gamma$.

Theorem (Jump Relations [Kress LIE 3rd ed. Thm. 6.15, 6.18,6.19])

$$[S\sigma] = 0$$

$$\lim_{x \to x_0 \pm} (S'\sigma) = \left(S' \mp \frac{1}{2}I\right)(\sigma)(x_0) \qquad \Rightarrow \qquad [S'\sigma] = -\sigma$$

$$\lim_{x \to x_0 \pm} (D\sigma) = \left(D \pm \frac{1}{2}I\right)(\sigma)(x_0) \qquad \Rightarrow \qquad [D\sigma] = \sigma$$

$$[D'\sigma] = 0$$

Truth in advertising: Assumptions on Γ ?

.

 $\int e C^2$

Representations for BVP solutions (Oraft)	Regnicond ::
Dirichlet	Nehman (Skie Skie Skie unigneng
int. $\lim_{x \to \partial \Sigma^-} u(x) = g(x)$	$\lim_{x\to\partial R^{-}} \partial_{x} = g(x)$
$(y - So(y)) = \int \sigma(x) dx$	u(*)= So(K)
(1) - 50(1) - 50(1) (not 2nd him) - 30R- 5KIE	L/~ Ju(2)= 50 + = 8
ext. $\lim_{x \to \partial \mathbb{R}^+} u(x) = g(u)$	$\lim_{x \to \partial \mathcal{N}^+} \partial_x u = g(u)$
$u(x) = D\sigma(x)$	u(x) = So(x)
Lin u(x)= Do+ = q ~-> DR+ SK115	$ \lim_{x \to \partial \mathcal{R}} \partial_{u} \cap (\lambda) = \frac{\int \nabla - \nabla - \nabla - \nabla - \nabla}{N(\frac{\int U^{\dagger} U^{\dagger}}{S' + \frac{1}{2} I}) - 7} $

Boundary Value Problems: Overview

	Dirichlet	Neumann
Int.	$\lim_{x\to\partial\Omega^-} u(x) = g$	$\lim_{x\to\partial\Omega^-}\hat{n}\cdot\nabla u(x)=g$
	unique	Q may differ by constant
Ext.	$\lim_{x\to\partial\Omega^+} u(x) = g$	$\lim_{x \to \partial \Omega +} \hat{n} \cdot \nabla u(x) = g$ $u(x) = o(1) \text{ as } x \to \infty$
	$u(x) = \begin{cases} O(1) & 2D \\ o(1) & 3D \end{cases} \Rightarrow x \to \infty$	$u(x) = o(1)$ as $ x \to \infty$ \bigcirc unique
	🕒 unique	
with $g \in C(\partial \Omega)$.		
What does $f(x) = O(1)$ mean? (and $f(x) = o(1)$?)		

Uniqueness Proofs

Dirichlet uniqueness: why?

$$\int_{\Omega} \int_{\partial R} \int_{\Omega} \int_$$

Suppose
$$u_{i/M_{2}}$$
 both solve $(int.)$ Dir. BUP, $u = u_{i} - u_{2}$
Neumann uniqueness: why?
Suppose $u_{i/M_{2}}$ both solve $(int.)$ Neman BUP. $u = u_{i} - u_{2}$
 $\partial_{u} u = 0$ on ∂E If u_{ij} uon-constant
 $\nabla u \neq 0$ somewhere.
 $\int_{\mathcal{X}} u \neq 0$ $\int_{\mathcal{X}} u = u_{1} - u_{2}$
 $\partial_{u} u = 0$ on ∂E If u_{ij} uon-constant
 $\nabla u \neq 0$ somewhere.
 $\int_{\mathcal{X}} u = u_{1} - u_{2}$
 $\partial_{u} u = 0$ on ∂E If $u_{ij} = 0$

Uniqueness: Remaining Points

Truth in advertising: Missing assumptions on Ω ?

Next mission: Find IE representations for each.

Uniqueness of Integral Equation Solutions

Theorem (Nullspaces [Kress LIE 2nd ed. Thm 6.20])

$$\blacktriangleright N(1/2 - D) = N(1/2 - S') = \{0\}$$

►
$$N(1/2 + D) = \text{span}\{1\}, N(1/2 + S') = \text{span}\{\psi\}$$

where $\int \psi \neq 0$.

IE Uniqueness: Proofs (1/3)

Show $N(I/2 - D) = \{0\}.$

Suppose
$$\frac{1}{2}$$
-De=0. To show: $\varphi=0$. $u(x):=De(x)$
 $\int_{x\to p}^{\infty} u(x)=0$. $u=0$. inside C . $\partial_{u}u_{-}=0$. Jump nel for 0^{1}
says $(\partial_{u}u)^{+}=0$. So u sat. an ext. Nomenup roblem
 $u/2 \operatorname{cro} bdry duta.$ (specifically, hus right decay).
 $=)u=0$ ontothe C .
Since $(De]=P$, $O=[u]=9$.

IE Uniqueness: Proofs (2/3)

Show
$$N(I/2 - S') = \{0\}.$$

Fred. Hohm.

IE Uniqueness: Proofs (3/3)Show $N(I/2 + \vec{D}) = \text{span}\{1\}$.

What conditions on the RHS do we get for int. Neumann and ext. Dirichlet?