April 18, 2024
Announcements

- Hur due

Goals

- ree. 'Junp rels
- OVP unitqneness
- draft of repr. cloice
- show le unianeness for all $4 \mathrm{BVP}_{s}$
w/ patch ext. Drichlel
- comers? - Helmholtz

Review

- Junp relations
- BVP umiqneness
- $\Delta n=0$

$$
u(x)=S_{o}(x)
$$

Jump Relations: Mathematical Statement

Let $[X]=X_{+}-X_{-}$. (Normal points towards " + " $=$"exterior".) Let $x_{0} \in \Gamma$.
Theorem (Jump Relations [Kress LIE 3rd ed. Thm. 6.15, 6.18,6.19])

$$
\begin{array}{rlll}
& & {[S \sigma]} & =0 \\
\lim _{x \rightarrow x_{0} \pm}\left(S^{\prime} \sigma\right)=\left(S^{\prime} \mp \frac{1}{2} I\right)(\sigma)\left(x_{0}\right) & \Rightarrow & {\left[S^{\prime} \sigma\right]} & =-\sigma \\
\lim _{x \rightarrow x_{0} \pm}(D \sigma)=\left(D \pm \frac{1}{2} I\right)(\sigma)\left(x_{0}\right) & \Rightarrow & {[D \sigma]} & =\sigma \\
& & {\left[D^{\prime} \sigma\right]} & =0
\end{array}
$$

Truth in advertising: Assumptions on Γ ?
$\Gamma \in C^{2}$

$$
\begin{array}{ll}
\Delta u=f & \\
\tilde{u}=G * f & \Delta \tilde{u}=f \\
u=\tilde{u}+u_{0} & \Delta u_{0}=0
\end{array}
$$

Boundary Value Problems: Overview

	Dirichlet	Neumann
Int.	$\lim _{x \rightarrow \partial \Omega-} u(x)=g$	$\lim _{x \rightarrow \partial \Omega-\hat{n} \cdot \nabla u(x)=g}$
	\oplus unique	0 may differ by constant

with $g \in C(\partial \Omega)$.
What does $f(x)=O(1)$ mean? (and $f(x)=o(1) ?)$

Uniqueness Proofs
Dirichlet uniqueness：why？

$$
\begin{aligned}
& \Delta u=0 \\
& u \|_{\partial r^{-}} \theta \Rightarrow u=0 .
\end{aligned}
$$

Suppose u_{1}, u_{2} hold solve（int．Din．BUP信，$n=u_{i}-u_{2}$
Neumann uniqueness：why？
Suppose n_{1}, u_{2} both solve（inti）Nenum B CP．$n=n_{1}-n_{2}$
$\partial_{n} u=0$ on $\partial \Omega$ ．If u is non－constinn， $\nabla u \neq 0$ somewhere．

$$
\begin{aligned}
& S_{\Omega} n \Delta n^{0}+\nabla n \cdot \nabla n=S_{\partial \Omega}^{n} \partial_{n} n \\
& 0<S_{\Omega}|\nabla n|^{\prime 2}=0
\end{aligned}
$$

Uniqueness: Remaining Points

Truth in advertising: Missing assumptions on Ω ?

Next mission: Find IE representations for each.

Uniqueness of Integral Equation Solutions

Theorem (Nullspaces [Kress LIE 2nd ed. Thy 6.20])

- $N(I / 2-D)=N\left(I / 2-S^{\prime}\right)=\{0\}$
- $N(I / 2+D)=\operatorname{span}\{1\}, N\left(I / 2+S^{\prime}\right)=\operatorname{span}\{\psi\}$, where $\int \psi \neq 0$.

ext.Divichlec int. Nemann

IE Uniqueness: Proofs $(1 / 3)$

Show $N(I / 2-D)=\{0\}$.
Suppose $\frac{\varphi}{2}-D \varphi=0$. To show: $\varphi=0 . \quad u(x):-D \varphi(x)$ $\lim _{x \rightarrow C^{-}} u(\lambda)=0$. $u \equiv 0$ inside $C . \quad \partial_{n} u_{-}=0$. Jump od fo D^{\prime} says $\left(\partial_{n} u\right)^{+}=0$. So u sat. an ext. Neman problem $w /$ zero beery data. (specifically,, has right decay).
$\Rightarrow n=0$ outside C.
Since $[D e]=\varphi, \quad O=[n]=\varphi$.

IE Uniqueness: Proofs (2/3)

Show $N\left(I / 2-S^{\prime}\right)=\{0\}$.
Fred. Horn.

IE Uniqueness: Proofs (3/3)

Show $N\left(1 / 2+D^{\prime}\right)=\operatorname{span}\{1\}$.

What conditions on the RHS do we get for int. Neumann and ext. Dirichlet?
"Clean" Fxictence for 3 out of 4

