




Where are we now? (I)
Summarize what we know about interaction ranks.
▶ We know that far interactions with a smooth kernel have low rank.

(Because: short Taylor expansion suffices)
▶ If

ψ(x) =
X

j

G (x , y j)φ(y j)

satisfies a PDE (e.g. Laplace), i.e. if G (x , y j) satisfies a PDE, then
that low rank is even lower.

▶ Can construct interior (‘local’) and exterior (‘multipole’) expansions
(using Taylor or other tools).

▶ Can lower the number of terms using the PDE.
▶ Can construct LinAlg-workalikes for interior (‘local’) and exterior

(‘multipole’) expansions.
▶ Can make those cheap using proxy points.
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Where are we now? (II)
So we can compute interactions where sources are distant from targets (i.e.
where the interaction is low rank) quite quickly.
Problem: In general, that’s not the situation that we’re in.

But: Most of the targets are far away from most of the sources.
(⇔ Only a few sources are close to a chosen ‘close-knit’ group of targets.)
So maybe we can do business yet–we just need to split out the near
interactions to get a hold of the far ones (which (a) constitute the bulk of
the work and (b) can be made cheap as we saw.)
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Preliminaries: Convolution

(f ∗ g)(x) =
Z

R
f (ξ)g(x − ξ)dξ.

▶ Convolution with shifted δ is the same as shifting the function;

[f ∗ (ξ 7→ δ(ξ − a))](x) = f (x − a)

▶ Convolution is linear (in both arguments) and commutative.
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Preliminaries: Fourier Transform

F(f )(ω) =

Z

R
f (x)e−2πiωxdx

▶ Convolution turns into multiplication: F{f ∗ g} = F f · Fg ,
▶ A single δ turns into: F{δ(x − a)}(ω) = e−iaω

▶ And a “train” of δs turns into:

F
(X

ℓ∈Z
δ(x − ℓ)

)
(ω) =

X

k∈Z
δ(ω − 2πk).

What is F{f (x − a)}?

See e.g. [Décoret ‘04].
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Simple and Periodic: Ewald Summation
Want to evaluate potential from an infinite periodic grid of sources:

ψ(x) =
X

m∈Zd

NsrcX

j=1

G (x , y j + m)φ(y j)
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Lattice Sums: Convergence
Q: When does this have a right to converge?
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Ewald Summation: Dealing with Smoothness

ψ(x) =
X

i∈Zd

NsrcX

j=1

G (x , y j + i )φ(y j)

Clear: a discrete convolution. Would like to make use of the fact that the
Fourier transform turns convolutions into products. How?
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Ewald Summation: Screens
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Ewald Summation: Field Splitting

We can split the computation (from the perspective of a unit cell target)
as follows:
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Ewald Summation: Summation (1D for simplicity)
Interesting bit: How to sum GLR.
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Ewald Summation: Remarks

In practice: Fourier transforms carried out discretely, using FFT.
▶ Additional error contributions from interpolation

(small if screen smooth enough to be well-sampled by mesh)
▶ O(N logN) cost (from FFT)
▶ Need to choose evaluation grid (‘mesh’)
▶ Resulting method called Particle-Mesh-Ewald (‘PME’)
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Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)
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Barnes-Hut: The Task At Hand
Want: All-pairs interaction.
Caution:
▶ In these figures: targets sources
▶ Here: targets and sources
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Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)
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Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)
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Barnes-Hut: Box Targets

For sake of discussion, choose one ‘box’ as targets.
Q: For which boxes can we then use multipole expansions?
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Barnes-Hut: Putting Multipole Expansions to Work

(Figure following G. Martinsson)
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Barnes-Hut: Accuracy

With this computational outline, what’s the accuracy?

Q: Does this get better or worse as dimension increases?
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