
CS 598 EVS: Tensor Computations
Matrix Computations Background

Edgar Solomonik

University of Illinois at Urbana-Champaign

Matrix Condition Number

I The matrix condition number κ(A) is the ratio between the max and min
distance from the surface to the center of the unit ball (norm-1 vectors)
transformed by A:

I The max distance to center is given by the vector maximizing max||x||=1 ||Ax||2.
I The min distance to center is given by the vector minimizing

min||x||=1 ||Ax||2 = 1/(max||x||=1 ||A−1x||2).
I Thus, we have that κ(A) = ||A||2||A−1||2

I The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product: Consider y + δy = A(x+ δx), assume ||x||2 = 1

I In the worst case, ||y||2 is minimized, that is ||y||2 = 1/||A−1||2
I In the worst case, ||δy||2 is maximized, that is ||δy||2 = ||A||2||δy||2
I So ||δy||2/||y||2 is at most κ(A)||δx||2/||x||2

Singular Value Decomposition
I The singular value decomposition (SVD)

We can express any matrix A as

A = UΣV T

where U and V are orthogonal, and Σ is square nonnegative and diagonal,

Σ =

σmax
. . .

σmin


Any matrix is diagonal when expressed as an operator mapping vectors from
a coordinate system given by V to a coordinate system given by UT .

I Condition number in terms of singular values

I We have that ‖A‖2 = σmax and if A−1 exists, ‖A−1‖2 = 1/σmin

I Consequently, κ(A) = σmax/σmin

Linear Least Squares
I Find x? = argminx∈Rn ||Ax− b||2 where A ∈ Rm×n:

Since m ≥ n, the minimizer generally does not attain a zero residual Ax− b.
We can rewrite the optimization problem constraint via

x? = argmin
x∈Rn

||Ax− b||22 = argmin
x∈Rn

[
(Ax− b)T (Ax− b)

]

I Given the SVD A = UΣV T we have x? = V Σ†UT︸ ︷︷ ︸
A†

b, where Σ† contains the

reciprocal of all nonzeros in Σ, and more generally † denotes pseudoinverse:
I The minimizer satisfies UΣV Tx? ∼= b and consequently also satisfies

Σy? ∼= d where y? = V Tx? and d = UT b.

I The minimizer of the reduced problem is y? = Σ†d, so yi = di/σi for
i ∈ {1, . . . , n} and yi = 0 for i ∈ {n+ 1, . . . ,m}.

Normal Equations
I Normal equations are given by solving ATAx = ATb:

If ATAx = ATb then

(UΣV T)TUΣV Tx = (UΣV T)Tb

ΣTΣV Tx = ΣTUTb

V Tx = (ΣTΣ)−1ΣTUTb = Σ†UTb

x = V Σ†UTb = x?

I However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm
Generally we have κ(ATA) = κ(A)2 (the singular values of ATA are the
squares of those in A). Consequently, solving the least squares problem via
the normal equations may be unstable because it involves solving a problem
that has worse conditioning than the initial least squares problem.

Demo: Normal equations vs Pseudoinverse
Demo: Issues with the normal equations

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html

Solving the Normal Equations

I If A is full-rank, then ATA is symmetric positive definite (SPD):
I Symmetry is easy to check (ATA)T = ATA.
I A being full-rank implies σmin > 0 and further if A = UΣV T we have

ATA = V TΣ2V

which implies that rows of V are the eigenvectors of ATA with eigenvalues Σ2

since ATAV T = V TΣ2.

I Since ATA is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:

ATA = LLT

QR Factorization
I If A is full-rank there exists an orthogonal matrix Q and a unique

upper-triangular matrix R with a positive diagonal such that A = QR

I Given ATA = LLT , we can take R = LT and obtain Q = AL−T , since
L−1AT︸ ︷︷ ︸

QT

AL−T︸ ︷︷ ︸
Q

= I implies that Q has orthonormal columns.

I A reduced QR factorization (unique part of general QR) is defined so that
Q ∈ Rm×n has orthonormal columns and R is square and upper-triangular
A full QR factorization gives Q ∈ Rm×m and R ∈ Rm×n, but since R is upper
triangular, the latter m− n columns of Q are only constrained so as to keep
Q orthogonal. The reduced QR factorization is given by taking the first n
columns Q and Q̂ the upper-triangular block of R, R̂ giving A = Q̂R̂.

I We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows

ATAx = ATb ⇒ R̂T Q̂T Q̂︸ ︷︷ ︸
I

R̂x = R̂T Q̂Tb ⇒ R̂x = Q̂Tb

Eigenvalue Decomposition
I If a matrix A is diagonalizable, it has an eigenvalue decomposition

A =XDX−1

where X are the right eigenvectors, X−1 are the left eigenvectors and D are
eigenvalues

AX =
[
Ax1 · · ·Axn

]
=XD =

[
d11x1 · · · dnnxn

]
.

I If A is symmetric, its right and left singular vectors are the same, and
consequently are its eigenvectors.

I More generally, any normal matrix, AHA = AAH , has unitary eigenvectors.
I A and B are similar, if there exist Z such that A = ZBZ−1

I Normal matrices are unitarily similar (Z−1 = ZH) to diagonal matrices
I Symmetric real matrices are orthogonally similar (Z−1 = ZT) to real diagonal

matrices
I Hermitian matrices are unitarily similar to real diagonal matrices

Similarity of Matrices

matrix similarity reduced form
SPD orthogonal real positive diagonal

real symmetric orthogonal real tridiagonal
real diagonal

Hermitian unitary real diagonal
normal unitary diagonal

real orthogonal real Hessenberg
diagonalizable invertible diagonal

arbitrary unitary triangular
invertible bidiagonal

Rayleigh Quotient

I For any vector x that is close to an eigenvector, the Rayleigh quotient
provides an estimate of the associated eigenvalue of A:

ρA(x) =
xHAx

xHx
.

I If x is an eigenvector of A, then ρA(x) is the associated eigenvalue.
I Moreover, for y = Ax, the Rayleigh quotient is the best possible eigenvalue

estimate given x and y, as it is the solution α to xα ∼= y.

I The normal equations for this scalar-output least squares problem are (assuming
A is real),

xTxα = xTy ⇒ α =
xTy

xTx
=

xTAx

xTx
.

Introduction to Krylov Subspace Methods
I Krylov subspace methods work with information contained in the n× k matrix

Kk =
[
x0 Ax0 · · · Ak−1x0

]
We seek to best use the information from the matrix vector product results
(columns of Kk) to solve eigenvalue problems.

I A is similar to companion matrix C =K−1n AKn:
Letting k(i)n = Ai−1x, we observe that

AKn =
[
Ak

(1)
n · · · Ak

(n−1)
n Ak

(n)
n

]
=
[
k
(2)
n · · · k

(n)
n Ak

(n)
n

]
,

therefore premultiplying by K−1m transforms the first n− 1 columns of AKn

into the last n− 1 columns of I,

K−1n AKn =
[
K−1n k

(2)
n · · · K−1n k

(n)
n K−1n Ak

(n)
n

]
=
[
e2 · · · en K−1n Ak

(n)
n

]

Krylov Subspaces

I Given QkRk =Kk, we obtain an orthonormal basis for the Krylov subspace,

Kk(A,x0) = span(Qk) = {p(A)x0 : deg(p) < k},

where p is any polynomial of degree less than k.
I The Krylov subspace includes the k − 1 approximate dominant eigenvectors

generated by k − 1 steps of power iteration:
I The approximation obtained from k − 1 steps of power iteration starting from x0

is given by the Rayleigh-quotient of y = Akx0.
I This vector is within the Krylov subspace, y ∈ Kk(A,x0).
I Consequently, Krylov subspace methods will generally obtain strictly better

approximations of the dominant eigenpair than power iteration.

Krylov Subspace Methods

I The k × k matrix Hk = Q
T
kAQk minimizes ||AQk −QkHk||2:

The minimizer X for the linear least squares problem QkX ∼= AQk is (via the
normal equations) X = QT

kAQk =Hk.
I Hk is upper-Hessenberg, because the companion matrix Cn is

upper-Hessenberg:
Note that Hk is the leading k-by-k minor of Hn and

Hn = QT
nAQn = RK−1n AKnR

−1 = RCnR
−1

is a product of three matrices: upper-triangular R, upper-Hessenberg Cn ,
and upper-triangular R−1, which results in upper-Hessenberg Hn.

Rayleigh-Ritz Procedure
I The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

Hk =XDX
−1

eigenvalue approximations based on Ritz vectors X are given by QkX.
I The Ritz vectors and values are the ideal approximations of the actual

eigenvalues and eigenvectors based on only Hk and Qk:
Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz
value λmax(Hk) will be the maximum Rayleigh quotient of any vector in
Kk = span(Qk),

max
x∈span(Qk)

xTAx

xTx
= max

y 6=0

yTQT
kAQky

yTy
= max

y 6=0

yTHky

yTy
= λmax(Hk),

which is the best approximation to λmax(A) = maxx6=0
xTAx
xTx

available in Kk.
The quality of the approximation can also be shown to be optimal for other
eigenvalues/eigenvectors.

Low Rank Matrix Approximation
I Given a matrix A ∈ Rm×n seek rank r < m, n approximation

I Given by matrices U ∈ Rm×r and V ∈ Rn×r so

A ≈ UV T

I Reduces memory footprint and cost of applying A from mn to mr + nr
I This factorization is nonunique, UV T = (UM)(VM−T)T

I Eckart-Young (optimal low-rank approximation by SVD) theorem
I Truncated SVD approximates A as

A ≈ Ã =

r∑
i=1

σiuiv
T
i

where σ1, . . . , σr are the largest r singular values, while ui and vi are the
associated left and right singular vectors

I Eckart-Young theorem demonstrates that the truncated SVD minimizes

‖A− Ã‖2︸ ︷︷ ︸
σr+1

and ‖A− Ã‖F︸ ︷︷ ︸∑min(m,n)
i=r+1 σi

Rank Revealing Matrix Factorizations
I Computing the SVD

I Can compute full SVD with O(mnmin(m,n)) cost via bidiagonalization
I unconditionally stable and accurate
I ine�cient for low r or if A is sparse

I Given any low-rank approximation composed of U and V , compute QR of each
and SVD of product of R factors to obtain SVD with total cost O((m+ n)r2)

I QR with column pivoting
I By selecting columns of largest norm in the trailing matrix during QR

factorization, we obtain a pivoted factorization with permutation matirx P

AP = QR

I Truncating this factorization can be done after applying r Householder
reflectors (or another QR algorithm on r columns), with cost O((m+ n)r)

I Approximation is somewhat suboptimal in theory, but in practice almost always
as accurate as truncated SVD

Orthogonal Iteration

I For sparse matrices, QR factorization creates fill, so must revert to iterative
methods

I Can find SVD of A by implicit products with ATA or AAT , since left singular
vectors of A are eigenvectors of ATA

I Krylov subspace methods are e�ective for computing the largest eigenvector
I Deflation, e.g., A→ (A− σ1u1v

T
1) can be used to compute other eigenvectors

I Orthogonal iteration interleaves deflation and power iteration
I Given starting eigenvector guess U (0) ∈ Rn×r, compute V (i+1) = AU (i) and

obtain U (i+1) as the Q factor of the QR of V (i+1)

I Converges to r largest eigenvectors, for SVD can compute V (i+1) = AT (AU (i))
at each iteration

I QR factorization serves to orthogonalize each column w.r.t. eigenvectors being
converged to by previous columns

Randomized SVD
I Orthogonal iteration for SVD can also be viewed as a randomized algorithm

I Suppose that we have an exact low-rank factorization A = UΣV T with
Σ ∈ Rr×r

I If U (0) is a random orthogonal matrix, so is V TU (0)

I Consequently,AU (0) is a set of r random linear combinations of columns of UΣ
I Further, U = U (1)U (1)TU since

span(U (1)) = span(V (1)) = span(U),

the latter equality holds with probability 1
I Consequently, we can compute SVD of U (1)TA (with cost O(nr2)) and recover
U by premultiplying the computed left singular vectors by U (1)

I When A is not exactly low-rank, span of leading singular vectors can be
captured by oversampling (e.g., selecting each U (i) to have r + 10 columns)

I Initial guess U (0) need not be orthogonal (Gaussian random performs well,
structured pseudo-random enables O(mn log n) complexity for one-shot
randomized SVD), but better accuracy is obtained with orthogonality

Multidimensional Optimization
I Minimize f(x)

I In the context of constrained optimization, also have equality and or inequality
constraints, e.g., Ax = b or x > 0

I Unconstrained local optimality holds if ∇f(x∗) = 0 and Hf (x
∗) is positive

semi-definite
I Reduces to solving nonlinear equations via optimality condition
I Unconstrained local optimality conditions are looser, need the gradient to be

zero or positive in all unconstrained directions at x∗
I The condition ∇f(x∗) = 0 implies poor conditioning, perturbations that change

the function value in the kth digit can change the sollution in the (k/2)th digit
I Quadratic optimization f(x) = 1

2x
TAx− bTx

I Quadratic optimization problems can provide local approximations to general
nonlinear optimization problems via Newton’s method (where A is the Hessian
and bT is the gradient)

I Equivalent to solving linear system Ax = b by optimality condition
I Accordingly, conditioning relative to perturbation in b is κ(A)

Basic Multidimensional Optimization Methods
I Steepest descent: minimize f in the direction of the negative gradient:

xk+1 = xk − αk∇f(xk)
such that f(xk+1) = minαk

f(xk − αk∇f(xk)), i.e. perform a line search
(solve 1D optimization problem) in the direction of the negative gradient.

I Given quadratic optimization problem f(x) = 1
2x

TAx+ bTx where A is
symmetric positive definite, the error ek = xk − x∗ satisfies

||ek+1||A = eTk+1Aek+1 =
σmax(A)− σmin(A)

σmax(A) + σmin(A)
||ek||A

I When su�ciently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.

I Convergence rate depends on the conditioning of A, since

σmax(A)− σmin(A)

σmax(A) + σmin(A)
=
κ(A)− 1

κ(A) + 1
.

Gradient Methods with Extrapolation
I We can improve the constant in the linear rate of convergence of steepest

descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction xk − xk−1):

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1)

I The heavy ball method, which uses constant αk = α and βk = β, achieves
better convergence than steepest descent:

||ek+1||A =

√
κ(A)− 1√
κ(A) + 1

||ek||A

Nesterov’s gradient optimization method is another instance of an
extrapolation method that provides further improved optimality guarantees.

Conjugate Gradient Method
I The conjugate gradient method is capable of making the optimal (for a

quadratic objective) choice of αk and βk at each iteration of an extrapolation
method:

(αk, βk) = argmin
αk,βk

[
f
(
xk − αk∇f(xk) + βk(xk − xk−1)

)]
I For SPD quadratic programming problems, conjugate gradient is an optimal first

order method, converging in n iterations.
I It implicitly computes Lanczos iteration, searching along A-orthogonal

directions at each step.

I Parallel tangents implementation of the method proceeds as follows

1. Perform a step of steepest descent to generate x̂k from xk.
2. Generate xk+1 by minimizing over the line passing through xk−1 and x̂k.

The method is equivalent to CG for a quadratic objective function.

Krylov Optimization
I Conjugate Gradient finds the minimizer of f(x) = 1

2x
TAx− bTx (which

satisfies optimality condition Ax = b) within the Krylov subspace of A:
I It constructs Krylov subspace Kk(A, b) = span(b,Ab, . . . ,Ar−1b).
I At the kth step conjugate gradient yields iterate

xk = −||b||2QkT
−1
k e1,

where Qk is an orthogonal basis for Krylov subspace Kk(A, b) and
Tk = QT

kAQk.
I This choice of xk minimizes f(x) since

min
x∈Kk(A,b)

f(x) = min
y∈Rk

f(Qky)

= min
y∈Rk

yTQT
kAQky + bTQky

= min
y∈Rk

yTTky + ||b||2eT1 y

is minimized by y = −||b||2T−1k e1.

Conjugate Gradient Convergence Analysis
I In previous discussion, we assumed Kn is invertible, which may not be the

case if A has m < n distinct eigenvalues, however, in exact arithmetic CG
converges in m− 1 iterations1

I the approximate solution xk obtained by CG after k − 1 iterations is given by
minimizing z in

‖b−Az‖2A−1 = φ(z) = (b−Az)TA−1(b−Az) = (x− z)TA(x− z)

over all z = ρk−1(A)b where ρk−1 can be any polynomial of degree k − 1 and
ρk−1 denotes the corresponding matrix-valued polynomial

I note that the above is consistent with minimizing the quadratic objective, since
the final expression is equal to

zTAz − 2zT b︸ ︷︷ ︸
2f(z)

− xT b︸︷︷︸
constant

I using Ax = b we can write z = ρk−1(A)Ax

1This derivation follows Applied Numerical Linear Algebra by James Demmel, Section 6.6.4

Conjugate Gradient Convergence Analysis (II)
I Using z = ρk−1(A)Ax, we can simplify φ(z) = (x− z)TA(x− z) as

φ(z) =
(
(I − ρk−1(A)A)x

)T
A
(
(I − ρk−1(A)A)x

)
= xTqk(A)Aqk(A)x

where Qk 3 qk(ξ) = 1− ρk−1(ξ) · ξ can be any degree k polynomial with
qk(0) = 1 (or in matrix form, qk(S) = I − ρk−1(S)S with qk(O) = I), so

φ(xk) = min
z∈Kk(A,b)

φ(z) = min
qk∈Qk

xTqk(A)Aqk(A)x

I We can bound the objective based on the eigenvalues of A = QΛQT using
the identity p(A) = Qp(Λ)QT ,

φ(z) = xTQqk(Λ)Λqk(Λ)QTx

≤ max
λi∈λ(A)

(qk(λi)
2)xTQΛQTx︸ ︷︷ ︸

φ(x0)

Conjugate Gradient Convergence Analysis (III)
I Using our bound on the square of the residual norm φ(z), we can see why CG

converges after m− 1 iterations if there are only m < n distinct eigenvalues

φ(xk) = min
qk∈Qk

φ(z) ≤ min
qk∈Qk

max
λi∈λ(A)

(qk(λi)
2)φ(x0)

consequently, the residual norm ‖rk‖A−1 =
√
φ(xk) decreases as

‖rk‖A−1

‖r0‖A−1

≤ min
qk∈Qk

max
λi∈λ(A)

|qk(λi)|

I To see that the residual goes to 0, we find a suitable polynomial in Qm (the
set of polynomials qm of degree m with qm(0) = 1)

I Specifically, we select qm to be zero at each distinct eigenvalue λ1, . . . , λm of A

qm(ξ) =

∏m
j=1(λi − ξ)∏m

j=1 λi

while also satisfiying qm(0) = 1
I This polynomial implies that ‖rm‖ = φ(xm) = 0 since maxλi∈λ(A) qm(λi)

2 = 0

Round-o� Error in Conjugate Gradient

I CG provides strong convergence guarantees for SPD matrices in exact
arithmetic

I Classically, CG was viewed as a direct method, since its guaranteed to
convergence in n iterations

I In practice, round-o� error prevents CG from achieving this for realistic
matrices, so CG was actually abandoned for a while due to being viewed as
unstable

I Later, it was realized that CG is highly competitive as an iterative method

I Due to round-o� CG may stagnate / have plateaus in convergence
I A formal analysis of round-o� error2 reveals that CG with round-o� is equivalent

to exact CG on a matrix of larger dimension, whose eigenvalues are clustered
around those of A

I Using this view, CG convergence plateaus may be explained by the polynomial
qk developing more and more zeros near the same eigenvalue of A

2A. Greenbaum and Z. Strakos, SIMAX 1992

Preconditioning
I Convergence of iterative methods for Ax = b depends on κ(A), the goal of a

preconditioner M is to obtain x by solving

M−1Ax =M−1b

with κ(M−1A) < κ(A)

I need not form M−1A but only compute matrix-vector products M−1(Ax)
I want M−1x to be easy to compute (easier than A−1x)
I so generally one extracts some M ≈ A that is easy to solve linear systems with

I Common preconditioners select parts of A or perform inexact factorization
I (block-)Jacobi preconditioner takes M to be (block-)diagonal of A
I incomplete LU (ILU) preconditioners compute M = LU ≈ A (+pivoting)
I ILU variants constraint sparsity of L and U factors during factorization to be

the same or not much more than that of A
I good problem-specific preconditioners are often available in practice and

theory, applying also to problems beyond linear systems (eigenvalue problems,
optimization, approximate graph algorithms)

Newton’s Method
I Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f :

f(xk + s) ≈ f̂(s) = f(xk) + s
T∇f(xk) +

1

2
sTHf (xk)s.

The minima of this function can be determined by identifying critical points

0 = ∇f̂(s) = ∇f(xk) +Hf (xk)s,

thus to determine s we solve the linear system,

Hf (xk)s = −∇f(xk).
Assuming invertibility of the Hessian, we can write the Newton’s method
iteration as

xk+1 = xk −Hf (xk)
−1∇f(xk)︸ ︷︷ ︸
s

.

Quadratic convergence follows by equivalence to Newton’s method for solving
nonlinear system of optimality equations ∇f(x) = 0.

Nonlinear Least Squares
I An important special case of multidimensional optimization is nonlinear least

squares, the problem of fitting a nonlinear function fx(t) so that fx(ti) ≈ yi:
For example, consider fitting f[x1,x2](t) = x1 sin(x2t) so thatf[x1,x2](1.5)f[x1,x2](1.9)

f[x1,x2](3.2)

 ≈
−1.24.5

7.3

 .
I We can cast nonlinear least squares as an optimization problem to minimize

residual error and solve it by Newton’s method:
Define residual vector function r(x) so that ri(x) = yi − fx(ti) and minimize

φ(x) =
1

2
||r(x)||22 =

1

2
r(x)Tr(x).

Now the gradient is ∇φ(x) = JTr (x)r(x) and the Hessian is

Hφ(x) = J
T
r (x)Jr(x) +

m∑
i=1

ri(x)Hri(x).

Gauss-Newton Method
I The Hessian for nonlinear least squares problems has the form:

Hφ(x) = J
T
r (x)Jr(x) +

m∑
i=1

ri(x)Hri(x).

The second term is small when the residual function r(x) is small, so
approximate

Hφ(x) ≈ Ĥφ(x) = J
T
r (x)Jr(x).

I The Gauss-Newton method is Newton iteration with an approximate Hessian:

xk+1 = xk − Ĥφ(xk)
−1∇f(xk) = xk − (JTr (xk)Jr(xk))

−1JTr (xk)r(xk).

Recognizing the normal equations, we interpret the Gauss-Newton method as
solving linear least squares problems Jr(xk)sk ∼= r(xk),xk+1 = xk − sk.

Constrained Optimization Problems

I We now return to the general case of constrained optimization problems:

min
x
f(x) subject to g(x) = 0 and h(x) ≤ 0

When f is quadratic, while h, g is linear, this is a quadratic optimization
problem.

I Generally, we will seek to reduce constrained optimization problems to a
series of simpler optimization problems:

I sequential quadratic programming: solve a series of constrained quadratic
optimization problems

I interior point methods: solve a series of more complicated (more
ill-conditioned) unconstrained optimization problems

Lagrangian Duality
I The Lagrangian function with constraints g(x) = 0 and h(x) ≤ 0 is

L(x,λ) = f(x) + λT
[
h(x)
g(x)

]
The constrained minima of f(x) must be saddle points of the Lagrangian
function

I The Lagrangian dual problem is an unconstrained optimization problem:

max
λ

q(λ), q(λ) =

{
minx L(x,λ) if λ ≥ 0

−∞ otherwise

The unconstrained optimality condition ∇q(λ∗) = 0, implies

max

(
λ∗,

[
h(x)
g(x)

])
= 0

when λ∗i = 0, we say the ith constraint is inactive at the minimum point.

Sequential Quadratic Programming
I Sequential quadratic programming (SQP) reduces a nonlinear equality

constrained problem to a sequence of constrained quadratic programs via a
Taylor expansion of the Lagrangian function Lf (x,λ) = f(x) + λTg(x):

q(xk + s,λk + δ) =Lf (xk,λk) + sT (∇f(xk) + JTg (xk)λk) +
1

2
sTB(xk,λk)s

+ δT (Jg(xk)s+ g(xk))

where B(x,λ) =Hf (x) +
∑m

i=1 λiHgi(x)

I SQP ignores the constant term Lf (xk,λk) and minimizes s while treating δ
as a Lagrange multiplier:
The above unconstrained quadratic program corresponds to the Lagrangian
form of the constrained quadratic program

max
s
sT (∇f(xk) + JTg (xk)λk) +

1

2
sTB(xk,λk)s

with constraint Jg(xk)s = −g(xk).

Interior Point Methods
I Barrier functions provide an e�ective way of working with inequality

constraints h(x) ≤ 0:
Inverse barrier function:

φµ(x) = f(x)− µ
m∑
i=1

1

hi(x)

Logarithmic barrier function:

φµ(x) = f(x)− µ
m∑
i=1

log(−hi(x))

in theory with su�ciently small steps we have x∗µ → x∗ as µ→ 0

I Interior point methods additionally incorporate Lagrangian optimization
I can be combined with SQP or alternating minimization
I slack variables with nonnegativity constraints reduce general inequality

constraints to nonnegativity and equality constraints
I optimality conditions for augmented Lagrangian conditions yield linear system
I conditioning of interior point linear systems su�ers as µ decreases

	Matrix Background
	Least Squares Problems
	Eigenvalues and Eigenvectors
	Krylov Subspace Methods
	Low Rank Approximation
	Numerical Optimization
	First-Order Methods
	Second-Order Methods
	Constrained Optimization

