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Matrix Condition Number

» The matrix condition number x(A) is the ratio between the max and min

distance from the surface to the center of the unit ball (norm-1 vectors)
transformed by A:

» The max distance to center is given by the vector maximizing max||||—1 || Az||2.

» The min distance to center is given by the vector minimizing
min|jg =1 [[Az|[2 = 1/(maxjz) =1 |[A™ 2]]2).
» Thus, we have that k(A) = || Al|2||A71]|2

» The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product: Consider y + dy = A(x + dx), assume ||xz||2 = 1

» In the worst case, ||y||2 is minimized, that is ||y||2 = 1/||A 7!z
» In the worst case, ||0y||2 is maximized, that is ||dy||2 = || Al|2||0y]|2
> So ||0yll2/llyll2 is at most k(A)||6x||2/||||2



Singular Value Decomposition
» The singular value decomposition (SVD)
We can express any matrix A as
A=Uzv"
where U and V are orthogonal, and X is square nonnegative and diagonal,

Omax
Y=
Omin
Any matrix is diagonal when expressed as an operator mapping vectors from
a coordinate system given by V' to a coordinate system given by U™

» Condition number in terms of singular values

» We have that || Al|z = omex and if A=1 exists, |A~ e = 1/omin

» Consequently, k(A) = Omax/Tmin



Linear Least Squares

» Find * = argmin pn ||Ax — b||2 where A € R™*":

Since m > n, the minimizer generally does not attain a zero residual Ax — b.
We can rewrite the optimization problem constraint via

x* = argmin || Az — b||3 = argmin |(Az — b)T (Az — b)}

FISING xrcR"”

» Giventhe SVD A = UXVT we have z* = VXIUT b, where = contains the
——

At
reciprocal of all nonzeros in 3, and more generally { denotes pseudoinverse:

» The minimizer satisfies USV Tx* = b and consequently also satisfies
Sy*>~d wherey*=VTz*andd=U"b.

» The minimizer of the reduced problem is y* = X'd, so y; = d;/o; for
1e€{l,...,n}andy; =0fori e {n+1,...,m}.



. Demo: Normal equations vs Pseudoinverse
Normal E quations Demo: Issues with the normal equations

» Normal equations are given by solving AT Az = ATb:
If AT Ax = ATb then

UzvhHlusvliz = (U=vh b
»TyvTie =2TUu"s
Vieg =T 127Uty = =1U”s
z=VIUTb =z

» However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm

Generally we have k(AT A) = k(A)? (the singular values of AT A are the
squares of those in A). Consequently, solving the least squares problem via
the normal equations may be unstable because it involves solving a problem
that has worse conditioning than the initial least squares problem.


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html

Solving the Normal Equations

» If Ais full-rank, then A” A is symmetric positive definite (SPD):

» Symmetry is easy to check (AT A)T = AT A.
» A being full-rank implies o, > 0 and further if A = UX VT we have

ATA=VT2Vv

which implies that rows of V are the eigenvectors of AT A with eigenvalues X2
since ATAVT = vTx2

» Since AT A is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:

ATA=LL"T



QR Factorization
» If A is full-rank there exists an orthogonal matrix Q and a unique
upper-triangular matrix R with a positive diagonal such that A = QR
» Given ATA =LL", we can take R = L™ and obtain Q = AL, since
L~ 'AT AL~T = I implies that Q has orthonormal columns.
P
» A reduced QR factorization (unique part of general QR) is defined so that
Q € R™ "™ has orthonormal columns and R is square and upper-triangular
A full QR factorization gives Q € R™*"™ and R € R™*", but since R is upper
triangular, the latter m — n columns of QQ are only constrained so as to keep
Q orthogonal. The reduced QR factorization is given by taking the first n
columns Q and Q the upper-triangular block of R, R giving A = QR.
» We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows

ATAz=ATb = RTOTQORzx=RTO™™ = Rz=0%b
I



Eigenvalue Decomposition
» If a matrix A is diagonalizable, it has an eigenvalue decomposition

A=XDX!
where X are the right eigenvectors, X ! are the left eigenvectors and D are
eigenvalues
AX = [Aasl A:cn] =XD = [dllml dnn:cn] .

» If A is symmetric, its right and left singular vectors are the same, and
consequently are its eigenvectors.

» More generally, any normal matrix, A" A = AA¥, has unitary eigenvectors.
» A and B are similar, if there exist Z suchthat A= ZBZ~!
» Normal matrices are unitarily similar (Z—' = Z¥) to diagonal matrices

» Symmetric real matrices are orthogonally similar (Z=' = ZT) to real diagonal
matrices

» Hermitian matrices are unitarily similar to real diagonal matrices



Similarity of Matrices

matrix similarity reduced form
SPD | orthogonal | real positive diagonal
real symmetric | orthogonal | real tridiagonal
real diagonal
Hermitian unitary real diagonal
normal unitary diagonal
real | orthogonal |real Hessenberg
diagonalizable invertible diagonal
arbitrary unitary triangular
invertible bidiagonal




Rayleigh Quotient

» For any vector x that is close to an eigenvector, the Rayleigh quotient
provides an estimate of the associated eigenvalue of A:

T Ax

pala) =~ =

» If x is an eigenvector of A, then pa(x) is the associated eigenvalue.

» Moreover, for y = Az, the Rayleigh quotient is the best possible eigenvalue
estimate given x and y, as it is the solution o to xa = y.

» The normal equations for this scalar-output least squares problem are (assuming
Ais real),
T Ty T Ax

iza=2"y = a=="2X
Tz zTx




Introduction to Krylov Subspace Methods
» Krylov subspace methods work with information contained in the n x k matrix

K, = [wo Axg --- Akilwo]
We seek to best use the information from the matrix vector product results
(columns of K.) to solve eigenvalue problems.
» A is similar to companion matrix C = K, 'AK,:
Letting D — Ai-1x we observe that
AK, — [Akf}) o ARDD Ak%n)] _ [ky(f) D Ak%n)] 7
therefore premultiplying by K! transforms the first n — 1 columns of AK,,
into the last n — 1 columns of I,

K;lAKn:[Kglkff) Kglk:?({‘) KglAkSZ")]

:[62 e ey K;lAk%n)]



Krylov Subspaces

» Given Q. R, = K}, we obtain an orthonormal basis for the Krylov subspace,

Ki(A, o) = span(Qr) = {p(A)xzo : deg(p) < k},
where p is any polynomial of degree less than k.

» The Krylov subspace includes the £ — 1 approximate dominant eigenvectors
generated by k — 1 steps of power iteration:

» The approximation obtained from k — 1 steps of power iteration starting from x
is given by the Rayleigh-quotient of y = AFx,,.
» This vector is within the Krylov subspace, y € K (A, xo).

» Consequently, Krylov subspace methods will generally obtain strictly better
approximations of the dominant eigenpair than power iteration.



Krylov Subspace Methods

» The k x k matrix H, = Q' AQj, minimizes ||AQy, — Qi Hy||2:
The minimizer X for the linear least squares problem Q. X = AQ)y, is (via the
normal equations) X = QL AQy, = Hy.

» H,; is upper-Hessenberg, because the companion matrix C,, is
upper-Hessenberg:
Note that Hy, is the leading k-by-k minor of H,, and

H,=Q"AQ, = RK;'AK,R ' = RC,R"

is a product of three matrices: upper-triangular R, upper-Hessenberg C,, ,
and upper-triangular R~", which results in upper-Hessenberg H,,.



Rayleigh-Ritz Procedure

» The eigenvalues/eigenvectors of H;, are the Ritz values/vectors:

H,=XDX!
eigenvalue approximations based on Ritz vectors X are given by Q. X.
» The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only H;, and Qy:

Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz
value \max(Hy,) will be the maximum Rayleigh quotient of any vector in

Ki = span(Qy),
z Az Yy QL AQky y Hpy
= =maX ————

max = Imax
zespan(Qr) e yz0  yTy y#0 yly

- )\max<Hk)a

which is the best approximation to Amax(A) = maxgzo “”ZT“_};” available in K;,.
The quality of the approximation can also be shown to be optimal for other
eigenvalues/eigenvectors.



Low Rank Matrix Approximation

» Given a matrix A € R™*" seek rank r < m,n approximation

» Given by matrices U € R™*" and V € R"*" so
A~UVT

» Reduces memory footprint and cost of applying A from mn to mr + nr
» This factorization is nonunique, UVT = (UM)(VM~T)T

» Eckart-Young (optimal low-rank approximation by SVD) theorem
» Truncated SVD approximates A as

r

~ ~_§: T

A~ A= o;u;;
=1

where o1, ...,0, are the largest r singular values, while w; and v; are the
associated left and right singular vectors
» Eckart-Young theorem demonstrates that the truncated SVD minimizes

|A—All; and |[|A— Al
— —
o T o



Rank Revealing Matrix Factorizations

» Computing the SVD
» Can compute full SVD with O(mn min(m,n)) cost via bidiagonalization
» unconditionally stable and accurate

> inefficient for low r or if A is sparse
» Given any low-rank approximation composed of U and V', compute QR of each

and SVD of product of R factors to obtain SVD with total cost O((m + n)r?)

» QR with column pivoting
» By selecting columns of largest norm in the trailing matrix during QR
factorization, we obtain a pivoted factorization with permutation matirx P

AP =QR

» Truncating this factorization can be done after applying r Householder
reflectors (or another QR algorithm on r columns), with cost O((m + n)r)
» Approximation is somewhat suboptimal in theory, but in practice almost always

as accurate as truncated SVD



Orthogonal Iteration

» For sparse matrices, QR factorization creates fill, so must revert to iterative
methods

» Can find SVD of A by implicit products with AT A or AAT, since left singular
vectors of A are eigenvectors of AT A

» Krylov subspace methods are effective for computing the largest eigenvector

» Deflation, e.g., A — (A — oyuivl) can be used to compute other eigenvectors

» Orthogonal iteration interleaves deflation and power iteration

» Given starting eigenvector guess U®) ¢ R"*" compute V (it1) = AU and
obtain UG+ gs the Q factor of the QR of V (i+1)

» Converges to r largest eigenvectors, for SVD can compute V+1) = AT(AU®)
at each iteration

» QR factorization serves to orthogonalize each column w.r.t. eigenvectors being
converged to by previous columns



Randomized SVD

» Orthogonal iteration for SVD can also be viewed as a randomized algorithm

>

Suppose that we have an exact low-rank factorization A = UXVT with
2 E RTXT

» If U js a random orthogonal matrix, so is VIU
» Consequently, AU js a set of r random linear combinations of columns of UX
» Further, U = UMYUWTU since

span(UW) = span(V M) = span(U),

the latter equality holds with probability 1

Consequently, we can compute SVD of UV A (with cost O(nr?)) and recover
U by premultiplying the computed left singular vectors by U1

When A is not exactly low-rank, span of leading singular vectors can be
captured by oversampling (e.g., selecting each U to have r + 10 columns)
Initial guess U®) need not be orthogonal (Gaussian random performs well,
structured pseudo-random enables O(mnlogn) complexity for one-shot
randomized SVD), but better accuracy is obtained with orthogonality



Multidimensional Optimization
» Minimize f(x)

>

In the context of constrained optimization, also have equality and or inequality
constraints, e.g., Ax =borx > 0

Unconstrained local optimality holds if V f (x*) = 0 and H¢(x*) is positive
semi-definite

Reduces to solving nonlinear equations via optimality condition

Unconstrained local optimality conditions are looser, need the gradient to be
zero or positive in all unconstrained directions at x*

The condition V f(x*) = 0 implies poor conditioning, perturbations that change
the function value in the kth digit can change the sollution in the (k/2)th digit

» Quadratic optimization f(z) = o7 Az — b’z

>

>

Quadratic optimization problems can provide local approximations to general
nonlinear optimization problems via Newton’s method (where A is the Hessian
and b" is the gradient)

Equivalent to solving linear system Ax = b by optimality condition

» Accordingly, conditioning relative to perturbation in b is k(A)



Basic Multidimensional Optimization Methods
» Steepest descent: minimize f in the direction of the negative gradient:

Tpy1 = T — oV f(xp)
such that f(xy+1) = ming, f(xr — axVf(xk)), i.e. perform a line search
(solve 1D optimization problem) in the direction of the negative gradient.
» Given quadratic optimization problem f(x) = 327 Az + b”x where A is
symmetric positive definite, the error e;, = x;, — x* satisfies
Umax(A) — Omin (A)

T
errilla =ep 1 Aep = exlla
|| + || k+1 + O'max(A)"‘Umin(A)H ||

» When sufficiently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.

» Convergence rate depends on the conditioning of A, since

O'max(A) - Umin(A) _ K(A) -1
Gmax(A) + Umin(A) H(A) +1°




Gradient Methods with Extrapolation

» We can improve the constant in the linear rate of convergence of steepest
descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction x;, — x;_1):

Tl = T — oV [f(xr) + Be(Tr — Tr1)

» The heavy ball method, which uses constant o, = o and 8, = 3, achieves
better convergence than steepest descent:

lewsilla = ﬁmwu

Nesterov’s gradient optimization method is another instance of an
extrapolation method that provides further improved optimality guarantees.



Conjugate Gradient Method

» The conjugate gradient method is capable of making the optimal (for a
qguadratic objective) choice of oy, and 3, at each iteration of an extrapolation
method:

(o, ) = anganin | 1 (w1 — 091 ) + o — 1)) |

o, Bk

» For SPD quadratic programming problems, conjugate gradient is an optimal first
order method, converging in n iterations.

» It implicitly computes Lanczos iteration, searching along A-orthogonal
directions at each step.

» Parallel tangents implementation of the method proceeds as follows

1. Perform a step of steepest descent to generate &;, from xy,.
2. Generate x1 by minimizing over the line passing through x;._, and &;.

The method is equivalent to CG for a quadratic objective function.



Krylov Optimization

» Conjugate Gradient finds the minimizer of f(z) = 2T Az — bTx (which
satisfies optimality condition Az = b) within the Krylov subspace of A:

» It constructs Krylov subspace Ki(A,b) = span(b, Ab, ..., A" 'b).
» At the kth step conjugate gradient yields iterate

zi, = —||b]2Qx T}, ‘e,

where Qy, is an orthogonal basis for Krylov subspace K (A, b) and
T, = QT AQy.
» This choice of x;, minimizes f(x) since

. o) = m
e in,  F(@) = min f(Qky)
= min y" QL AQ,y + b" Qry
yERF
= min y" Tpy + ||b]|2e] y
yERF

is minimized by y = —||b||T} "e;.



Conjugate Gradient Convergence Analysis

» In previous discussion, we assumed K, is invertible, which may not be the
case if A has m < n distinct eigenvalues, however, in exact arithmetic CG
converges in m — 1 iterations’

» the approximate solution x; obtained by CG after k — 1 iterations is given by
minimizing z in
Ib— Azl = 6(z) = (b— Az)T A\ (b~ Az) = (z — 2) Az - 2)
over all z = py_1(A)b where py_1 can be any polynomial of degree k — 1 and
pr_1 denotes the corresponding matrix-valued polynomial
» note that the above is consistent with minimizing the quadratic objective, since
the final expression is equal to
z2TAz—22Tb— 27b
—_— =~

2f(z) constant

» using Ax = b we can write z = p;_1(A)Ax

'This derivation follows Applied Numerical Linear Algebra by James Demmel, Section 6.6.4



Conjugate Gradient Convergence Analysis (II)
» Using z = pp_1(A) Az, we can simplify ¢(z) = (x — 2)T A(x — z) as

T
6(2) = ((I - pr1(A)A)2) A((I - pr1(A)A)a) = 27 g4(A) Agy(A)w
where Q. 3 qx(§) = 1 — pr_1(§) - £ can be any degree k polynomial with
qx(0) = 1 (or in matrix form, qx(S) = I — px—1(S)S with q;(O) = I), so
Olag) = _min = 6(2) = min x"q(A)Agy(A)x

» We can bound the objective based on the eigenvalues of A = QAQ7 using
the identity p(A) = Qp(A)Q7,

¢(2z) = 2" Qqr(A)Aqi(A)QTx

< )\z 2 T A T
_Aglg@(q/c( ) )z QAQ x
#(xo0)



Conjugate Gradient Convergence Analysis (III)

» Using our bound on the square of the residual norm ¢(z), we can see why CG
converges after m — 1 iterations if there are only m < n distinct eigenvalues

¢(z1) = min ¢(z) < min )\fg)é\%(}i)(Qk()\i)Q)ﬁb(wo)

consequently, the residual norm ||ri|| o1 = \/¢(zx) decreases as

75|l a1 :
M2 < min max A\
Trollas = a2B, ooa,) lae(%o)l

» To see that the residual goes to 0, we find a suitable polynomial in 9, (the
set of polynomials g,,, of degree m with ¢,,(0) = 1)

» Specifically, we select q,,, to be zero at each distinct eigenvalue Ay, ..., \,, of A
o = a =9
dm - H;n=1 )\Z

while also satisfiying ¢,,(0) = 1
> This polynomial implies that ||r,,|| = ¢(2,,) = 0 since maxy,exca) gm(Ai)? =0



Round-off Error in Conjugate Gradient

» CG provides strong convergence guarantees for SPD matrices in exact
arithmetic

» Classically, CG was viewed as a direct method, since its guaranteed to
convergence in n iterations

» In practice, round-off error prevents CG from achieving this for realistic
matrices, so CG was actually abandoned for a while due to being viewed as
unstable

» Later, it was realized that CG is highly competitive as an iterative method

» Due to round-off CG may stagnate / have plateaus in convergence

» A formal analysis of round-off error? reveals that CG with round-off is equivalent
to exact CG on a matrix of larger dimension, whose eigenvalues are clustered
around those of A

» Using this view, CG convergence plateaus may be explained by the polynomial
qr. developing more and more zeros near the same eigenvalue of A

2A. Greenbaum and Z. Strakos, SIMAX 1992



Preconditioning

» Convergence of iterative methods for Az = b depends on x(A), the goal of a
preconditioner M is to obtain x by solving

M 'Az=M"'b

with k(M1 A) < k(A)

» need not form M~ A but only compute matrix-vector products M ~—'(Azx)
» want M ~—'x to be easy to compute (easier than A~'x)
» so generally one extracts some M = A that is easy to solve linear systems with

» Common preconditioners select parts of A or perform inexact factorization

(block-)Jacobi preconditioner takes M to be (block-)diagonal of A

» incomplete LU (ILU) preconditioners compute M = LU =~ A (+pivoting)

» ILU variants constraint sparsity of L and U factors during factorization to be
the same or not much more than that of A

» good problem-specific preconditioners are often available in practice and

theory, applying also to problems beyond linear systems (eigenvalue problems,

optimization, approximate graph algorithms)

v



Newton’s Method

» Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f:

Flan+ )~ f(s) = flaw) + 7V (wx) + 55" Hyla)s.
The minima of this function can be determined by identifying critical points
0 =Vf(s) = Vf(zx) + Hy(x)s,
thus to determine s we solve the linear system,
Hy(wp)s = =V f(wp).

Assuming invertibility of the Hessian, we can write the Newton’s method
iteration as
T = x, — Hp(xp) 'V ().
S
Quadratic convergence follows by equivalence to Newton’s method for solving
nonlinear system of optimality equations V f(x) = 0.




Nonlinear Least Squares

» An important special case of multidimensional optimization is nonlinear least
squares, the problem of fitting a nonlinear function f(¢) so that fx(t;) =~ v;:

For example, consider fitting fi,, ., (t) = x1sin(zat) so that

f[mhm](lé) —-1.2
f[xl,xz](1.9) ~ | 4.5
fio1,221(3:2) 7.3

» We can cast nonlinear least squares as an optimization problem to minimize
residual error and solve it by Newton’s method:

Define residual vector function r(x) so that r;(x) = y; — f«(t;) and minimize
1 1
o) = 5lIr(@)]} = 5r(@) 7 (@).
Now the gradient is V¢(x) = JI (x)r(x) and the Hessian is

T

Hy(x) = J; ()dr(x) + ) _ri(@)Hy, ().
=1



Gauss-Newton Method

» The Hessian for nonlinear least squares problems has the form:

Hy(x) = J; () Jr(x) + ) ri(@) Hr,(x).

m
=1

The second term is small when the residual function r(x) is small, so

approximate A
Hy(z) ~ Hy(z) = J, (2)Jr(@).

» The Gauss-Newton method is Newton iteration with an approximate Hessian:

Tpy1 = — Hy(x) 'V f(ar) = o — (I} (@) Tr (@) T () r ().

Recognizing the normal equations, we interpret the Gauss-Newton method as
solving linear least squares problems J,.(xy)sy = r(xk), k11 = Tk — Sk



Constrained Optimization Problems

» We now return to the general case of constrained optimization problems:

min f(x) subjectto g(x)=0 and h(x)<0

When f is quadratic, while h, g is linear, this is a quadratic optimization
problem.

» Generally, we will seek to reduce constrained optimization problems to a
series of simpler optimization problems:

» sequential quadratic programming: solve a series of constrained quadratic
optimization problems

» interior point methods: solve a series of more complicated (more
ill-conditioned) unconstrained optimization problems



Lagrangian Duality

» The Lagrangian function with constraints g(x) =0 and h(x) <0 is
h(x)
Lz, ) = + AT { ]

The constrained minima of f(x) must be saddle points of the Lagrangian
function

» The Lagrangian dual problem is an unconstrained optimization problem:

{minx L(x,A) ifA>0

max q(\), A) =
AXQ( ) —00 otherwise

The unconstrained optimality condition Vg¢(A*) = 0, implies

ma (X [30)]) =

when X} = 0, we say the ith constraint is inactive at the minimum point.



Sequential Quadratic Programming

» Sequential quadratic programming (SQP) reduces a nonlinear equality
constrained problem to a sequence of constrained quadratic programs via a
Taylor expansion of the Lagrangian function L;(z, A) = f(z) + Al g(z):

q(ay + 8, A\ + 8) =Ly (xp, ) + 8" (V[ (xr) + Iy (wr)Ap) + %STB(Q% Ak)s
+ 07 (Jg(xy)s + g(x))
where B(xz,A) = Hy(x) + 327" \iHy, ()

» SQP ignores the constant term L¢(x, A;) and minimizes s while treating 6
as a Lagrange multiplier:

The above unconstrained quadratic program corresponds to the Lagrangian
form of the constrained quadratic program

1
max " (Vf(xr) + Jg (1) M) + §3TB(‘17k7 Ak)s

with constraint Jg(xy)s = —g(x).



Interior Point Methods

» Barrier functions provide an effective way of working with inequality
constraints h(x) < 0:

Inverse barrier function:

ou(@) = @) = 1Y s
i=1 "

Logarithmic barrier function:

Su(@) = f(x) — p Y log(~hi())
i=1

in theory with sufficiently small steps we have x;, — x* as u — 0
» Interior point methods additionally incorporate Lagrangian optimization

» can be combined with SQP or alternating minimization

» slack variables with nonnegativity constraints reduce general inequality
constraints to nonnegativity and equality constraints

» optimality conditions for augmented Lagrangian conditions yield linear system

» conditioning of interior point linear systems suffers as u decreases
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