
CS 598 EVS: Tensor Computations
Bilinear Algorithms

Edgar Solomonik

University of Illinois at Urbana-Champaign

Bilinear Problems

I A number of basic numerical problems can be thought of as bilinear
functions associated with particular order 3 tensors
I matrix multiplication
I discrete convolution
I symmetric tensor contractions

I These problems admit nontrivial fast bilinear algorithms, which correspond
to low-rank CP decompositions of the tensors
I Strassen’s O(nlog2(7)) algorithm for matrix multiplication as well as all other

subcubic matrix multiplication
I The discrete Fourier transform (DFT), Toom-Cook, and Winograd algorithms for

convolution are also examples of bilinear algorithms
I We will review fast bilinear algorithms for all of these approaches, using

0-based indexing when discussing convolution

Bilinear Problems
I A bilinear problem for any inputs a ∈ Rn and b ∈ Rk computes c ∈ Rm as

defined by a tensor T ∈ Rm×n×k

ci =
∑
j,k

tijkajbk ⇔ c = f (T)(a, b)

I Variants of discrete convolutions (linear convolution, correlation, cyclic
convolution) provide simple examples of T
I Linear convolution

tijk =

{
1 : k + i− j = 0

0 : otherwise
⇒ ci =

∑
j,k

tijkajbk =

min(i,n−1)∑
j=max(0,i−n+1)

ajbi−j

I Correlation obtained by transposing the first and last mode of the linear
convolution tensor

I Cyclic convolution has tijk = 1 if and only if k + i− j = 0 (mod n)

Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) Λ = (F (A),F (B),F (C)) computes

c = F (C)[(F (A)Ta)� (F (B)Tb)],

where a and b are inputs and � is the Hadamard (pointwise) product.

Bilinear Algorithms as Tensor Factorizations
I A bilinear algorithm corresponds to a CP tensor decomposition

ci =

R∑
r=1

f
(C)
ir

(∑
j

f
(A)
jr aj

)(∑
k

f
(B)
kr bk

)

=
∑
j

∑
k

(R∑
r=1

f
(C)
ir f

(A)
jr f

(B)
kr

)
ajbk

=
∑
j

∑
k

tijkajbk where tijk =

R∑
r=1

f
(C)
ir f

(A)
jr f

(B)
kr

I For multiplication of n× n matrices, we can define a matrix multiplication
tensor and consider algorithms with various bilinear rank
I T is n2 × n2 × n2
I Classical algorithm has rank R = n3

I Strassen’s algorithm has rank R ≈ nlog2(7)

Strassen’s Algorithm

Strassen’s algorithm
[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

]
·
[
B11 B12

B21 B22

]
M1 = (A11 +A22) · (B11 +B22)

M2 = (A21 +A22) ·B11

M3 = A11 · (B12 −B22)

M4 = A22 · (B21 −B11)

M5 = (A11 +A12) ·B22

M6 = (A21 −A11) · (B11 +B12)

M7 = (A12 −A22) · (B21 +B22)

C11 = M1 +M4 −M5 +M7

C21 = M2 +M4

C12 = M3 +M5

C22 = M1 −M2 +M3 +M6

By performing the nested calls recursively, Strassen’s algorithm achieves cost,

T (n) = 7T (n/2) +O(n2) = O(7log2 n) = O(nlog2 7)

Fast Bilinear Algorithms for Convolution
I Linear convolution corresponds to polynomial multiplication

I Let a and b be coe�cients of degree n− 1 polynomial p and degree k − 1
polynomial q then

(p · q)(x) =

n+k−1∑
i=0

cix
i where ci =

min(i,n−1)∑
j=max(0,i−n+1)

ajbi−j

I This view motivates algorithms based on polynomial interpolation

I The Toom-Cook convolution algorithm computes the coe�cients of p · q by
computing (p · q)(xi) for i ∈ {1, . . . , n+ k − 1} and interpolates
I Let Vr be a (n+ k − 1)-by-r Vandermonde matrix based on the nodes x, so that
Vna = [p(x1), · · · , p(xn+k−1)]T , etc.

I Then to evaluate p and q at x and interpolate, we compute

c = V −1n+k−1((Vna)� (Vkb))

which is a bilinear algorithm

Toom-Cook Convolution and the Fourier Transform
I Vandermonde matrices are ill-conditioned with real nodes, but can be

perfectly conditioned with complex nodes
I The condition number of a Vandermonde matrix with real nodes is exponential

in its dimension
I Choosing the nodes x to be the complex roots of unity gives the discrete Fourier

transform (DFT) matrix D(n), d(n)jk = ωjkn where ωn = e2iπ/n

I Modulo normalization DFT matrix is orthogonal and symmetric (not Hermitian)
I The fast Fourier transform (FFT) can be used to perform products with the

DFT matrix in O(n log n) time Taking D̃(n) to be the n1 × n2 (for n = n1n2)
leading minor of Dn we can compute y = D(n)x via the split-radix-n1 FFT,

yk =

n−1∑
i=0

xiω
ik
n =

n/2−1∑
i=0

x2iω
ik
n/2 + ωk

n

n/2−1∑
i=0

x2i+1ω
ik
n/2

y(kn1+t) =

n1−1∑
s=0

ωst
n1

[
ωsk
n

n2−1∑
i=0

x(in1+s)ω
ik
n2

]
⇔ Y = ([D̃(n) � (D(n2)A)]D(n1))T

Cyclic Convolution via DFT
I For linear convolution D(n+k−1) is used, for cyclic convolution D(n) su�ces

I Expanding the bilinear algorithm, y = D(n)−1((D(n)f)� (D(n)g)
)
, we obtain

yk =
1

n

n−1∑
i=0

ω−ki(n)

(n−1∑
j=0

ωij(n)fj

)(n−1∑
t=0

ωit(n)gt

)
=

1

n

n−1∑
i=0

n−1∑
j=0

n−1∑
t=0

ω
(j+t−k)i
(n) fjgt

I It su�ces to observe that for any fixed u = j + t− k 6= 0 or 6= n, the outer
summation yields a zero result, since the geometric sum simplifies to

n−1∑
i=0

ωui(n) = (1− (ωu(n))
n)/(1− ωu(n)) = 0

I The DFT also arises in the eigendecomposition of a circulant matrix
I The cyclic convolution is defined by the matrix-vector product y = C〈a〉b where

C〈a〉 =

[
a0 · · · a1

...
. . .

...
an−1 · · · a0

]
I The eigenvalue decomposition of this matrix is C〈a〉 = D(n)−1 diag(D(n)a)D(n)

Winograd’s Algorithm for Convolution
I The DFT/FFT requires complex arithmetic, motivating alternatives such as

the more general Winograd family of algorithms
I In Winograd’s convolution algorithm, the remainder of the product v = pq is

computed using k distinct polynomial divisors, m(i), whose product is the
polynomial M with deg(M) > deg(v)

I The k polynomial divisors, m(1),m(2), · · · ,m(k) must be coprime
I From the k remainders, u(i) = pq mod m(i) the remainder v = pq mod M is

recovered via the Chinese remainder theorem
I The theorem leverages Bézout’s identity, which states that there exist

polynomials n(i) and N (i) such that, for M (i) = M/m(i),

M (i)N (i) +m(i)n(i) = 1

which allow us to construct v

v =
(k∑
i=1

u(i)M (i)N (i)
)

mod M

I Toom-Cook algorithms are special cases of Winograd’s convolution algorithm,
where the polynomial divisors are m(i)(x) = x− χi, where χi are nodes

Algebraic Formulation of Winograd’s Algorithm for Convolution
I Winograd’s convolution algorithm can be written as a bilinear algorithm by

defining appropriate linear transformations
I Linear convolution corresponds to a product with a Toeplitz matrix, c = T〈a,k〉b

where T〈a,k〉 ∈ Rn+k−1×k is

T〈a,k〉 =


a0

...
. . .

an−1 a0

. . .
...

an−1


I Let X〈m,d〉 ∈ Cdeg(m)×(d+1) be a matrix that computes the coe�cients of ρ = p

(mod m) when multiplied by coe�cients of degree d polynomial p, ρ = X〈m,d〉p

X〈m,d〉 =
[
I −LU−1

]
where I is an identity matrix of dimension deg(m), L contains the top deg(m)
rows of T〈m,d−deg(m)+1〉, and U contains the bottom d+ 1 rows of
T〈m,d−deg(m)+1〉

Algebraic Formulation of Winograd’s Algorithm for Convolution

I Given an operator X〈m,d〉 ∈ Cdeg(m)×(d+1) to compute coe�cients of ρ = p
(mod m), we can e�ciently compute

pq mod m = (p mod m)(q mod m) mod m,

X〈m,deg(p)+deg(q)−1〉(p ∗ q) = X〈m,2deg(m)−1〉
(
(X〈m,deg(p)〉p) ∗ (X〈m,deg(q)〉q)

)
I Further, given a bilinear algorithm (A,B,C) to compute linear convolution of

two m-dimensional vectors, we can obtain a bilinear algorithm
(XT
〈m,deg(p)〉A,X

T
〈m,deg(q)〉B,X〈m,2deg(m)−1〉C) to compute ρ = pq mod m, since

ρ = X〈m,2deg(m)−1〉C
(
(ATX〈m,deg(p)〉p)� (BTX〈m,deg(q)〉q)

)
.

Algebraic Formulation of Winograd’s Algorithm for Convolution
I Winograd’s convolution algorithm e�ectively merges smaller bilinear

algorithms for linear convolution
I Given M =

∏k
i=1m

(i) where deg(M) = n+ r − 1 and m(1), · · · ,m(k) are
coprime, as well as (A(i),B(i),C(i)) for i ∈ {1, . . . , k}, where (A(i),B(i),C(i)) is
a bilinear algorithm for linear convolution of vectors of dimension deg(m(i))

I Winograd’s convolution algorithm yields a bilinear algorithm (A,B,C) for
computing linear convolution with vectors of dimension r and n, where

A =
[
XT
〈m(1),r−1〉A

(1) · · · XT
〈m(k),r−1〉A

(k)
]
,

B =
[
XT
〈m(1),n−1〉B

(1) · · · XT
〈m(k),n−1〉B

(k)
]
,and

C =
[
C̃(1) · · · C̃(k)

]
where C̃(i) = X〈M,deg(M)+deg(m(i))−2〉T〈e(i),deg(m(i))〉X〈m(i),2deg(m(i))−1〉C

(i) and
e(i) are coe�cients of polynomial e(i) = M (i)N (i) mod M .

Algebraic Formulation of Winograd’s Algorithm for Convolution

I A missing piece of the above formulation is how to realize Bézout’s identity
to compute N (i) and e(i)

I e(i) = M (i)N (i) mod M so it su�ces to compute n(i) and N (i) then apply
previously mentioned linear transformations

I The extended Euclidian algorithm can be used for this task, or one can solve a
linear system

I The coe�cients of polynomials N̂ and n̂ satisfying M̂N̂ + m̂n̂ = 1 for coprime M̂
and m̂ are

[
N̂
n̂

]
=
[
T〈M̂ ,deg(m̂)−1〉 T〈m̂,deg(M̂)−1〉

]−1


1
0
...
0



Nested Bilinear Algorithms for Convolution
I 2D convolution is equivalent to nested 1D convolution

I Given F ∈ Rr×r and G ∈ Rn×n, the 2D linear convolution Y = F ∗G with
Y ∈ R(n+r−1)×(n+r−1) gives

yab =

min(a,r−1)∑
i=max(0,a−n+1)

min(b,r−1)∑
j=max(0,b−n+1)

fijga−i,b−j

I 2D bilinear problem is defined by tensor T (2D) = T ⊗ T where ⊗ is the natural
generalization of Kronecker product to tensors

I 1D convolution can be reduced to 2D convolution with some work
I For linear convolution, with vectors of dimension n = st can reduce to s× t 2D

convolution to obtain rank (2s− 1)(2t− 1) bilinear algorithm via overlap-add
technique, which computes partial sums of the result of the 2D convolution

I For cyclic convolution, Agarwal-Cooley algorithm uses the Chinese remainder
theorem for integers to decouple dimension n = st convolution to s× t 2D cyclic
convolution via permutations

I For more details on the above derivations and a broader survey of
convolution algorithms, see https://arxiv.org/abs/1910.13367

https://arxiv.org/abs/1910.13367

Symmetric Tensor Contractions
I Bilinear algorithms can also be used to accelerate tensor contractions for

tensors with symmetry
I Recall a symmetric tensor is defined by e.g., tijk = tikj = tkij = tjki = tjik = tkji
I Tensors can also have skew-symmetry (also known as antisymmetry,

permutations have +/− signs), partial symmetry (only some modes are
permutable), or group symmetry (blocks are zero if indices satisfy modular
equation)

I The simplest example of a symmetric tensor contraction is

y = Ax where A = AT

it is not obvious how to leverage symmetry to reduce cost of this contraction

I Bilinear algorithms for symmetric tensor contractions exist with lower rank
than their nonsymmetric counterparts
I Symmetric matrix-vector product can be done with n(n+ 1)/2 multiplications
I Cost of contractions of partially symmetric tensors reduced via this technique

Symmetric Matrix Vector Product
I Consider computing c = Ab with A = AT

I Typically requires n2 multiplications since aijbj 6= ajibi and n2 − n additions
I Instead can compute

vi =

i−1∑
j=1

uij +

n∑
j=i+1

uji where uij = aij(bi + bj)

using n(n− 1)/2 multiplications (since we only need uij for i > j) and about
3n2/2 additions, then

ci = (2aii −
n∑
j=1

aij)bi + vi

using n more multiplications and n2 additions
I Beneficial when multiplying elements of A and b costs more than addition
I This technique yields a bilinear algorithm with rank n(n+ 1)/2

Partially-Symmetric Tensor Times Matrix (TTM)
I Can use symmetric mat-vec algorithm to accelerate TTM with partially

symmetric tensor from 2n4 operations to (3/2)n4 +O(n3)
I Given A ∈ Rn×n×n with symmetry aijk = ajik and B ∈ Rn×n, we compute

cikl =
∑
j

aijkbjl

I We can think of this as a set of symmetric matrix-vector products

c(k,l) = A(k)b(l)

and apply the fast bilinear algorithm

vikl =

i−1∑
j=1

uijkl +

n∑
j=i+1

uijkl where uijkl = aijk(bil + bjl)

cikl = (2aiik −
n∑
j=1

aijk)bil + vikl

using about n4/2 multiplications and n4 +O(n3) additions (need only n3 distinct
sums of elements of B) to compute V , then O(n3) operations to get C from V

Computing Symmetric Matrices
I Output symmetry can also be used to reduced cost, for example when

computing a symmetrized outer product C = abT + baT

I C = CT so su�ces to compute cij for i ≥ j, cij = aibj + ajbi
I To reduce number of products by a factor of 2, can instead compute

cij = (ai + aj)(bi + bj)− vi − vj where vi = aibi

I To symmetrize product of two symmetric matrices, can compute
anticommutator, C = AB +BA

I Each matrix can be represented with n(n+ 1)/2 elements, but products all n3
products aikbkj are distinct (so typically cost is 2n3)

I Cost can be reduced to n3/6 +O(n2) products by amortizing terms in

cij =
∑
k

(aij + aik + ajk)(bij + bik + bjk)− naijbij

−
(∑

k

aik + ajk

)
bij − aij

(∑
k

bik + bjk

)
−
∑
k

aikbik −
∑
k

ajkbjk

General Symmetric Tensor Contractions
I We can now consider the cost of a symmetrized contraction over v indices of

symmetric tensors A (of order s+ v) and B (of order v + t)

ci′1...i′s,j′1...j′t =
∑

{i1...is,j1...jt}∈Π(i′1...i
′
s,j
′
1...j

′
t)

∑
k1...kv

ai1...is,k1...kvbk1...kv ,j1...jt

where Π gives all distinct partitions of the s+ t indices into two subsets of
size s and t, e.g.,

Π(i1, j1j2) = {{i1, j1j2}, {j1, i1j2}, {j2, i1j1}}

I Such tensor contractions can be done using
ns+t+v/(s+ t+ v)! +O(ns+t+v−1) products
I General algorithm looks similar to anticommutator matrix product
I After multiplying subsets of operands, unneeded terms are all computable with

O(ns+t+v−1) products
I These approaches correspond to bilinear algorithms of this rank

Hankel Matrix Vector Product
I A Hankel matrix is a reflection of a Toeplitz matrix (which can similarly be

used to compute convolution),

H =



h1 h2 h3 . . .
h2 h3

h3

. . .
...



I Hankel matrices are symmetric across blocks and Hankel within blocks

H =

[
H1 H2

H2 H1

]
but not vice versa, i.e., some elements in H1 must be the same as in H2

I Can compute Hankel mat-vec by applying symmetric mat-vec recursively
I For n = 2 fast bilinear algorithm requires n(n+ 1)/2 = 3 products
I Additions of Hankel matrices and vector entries can be done in O(n) time, so

T (n) = 3T (n/2) +O(n) = O(nlog2(3))

I This complexity is as good as the recursive application of Toom-Cook, but
O(n log n) can be achieved via FFT or other techniques

Group Symmetry
I Tensors arising in physical simulations often have group structure that

reflects conservation laws
I Abelian group symmetries can be mapped to cyclic group, which can be used to

define a block-sparse form of the tensors (here represented using extra modes)
I A particularly common/important contraction with cyclic group symmetry is

waA,bB,iI,jJ =
∑

k,K,l,L

uaA,bB,kK,lLvkK,lL,iI,jJ .

where for some group size G, we have symmetries, e.g.,

waA,bB,iI,jJ 6= 0 if A+B − I − J ≡ 0 (mod G),

uaA,bB,kK,lL 6= 0 if A+B +K + L ≡ 0 (mod G),

vkK,lL,iI,jJ 6= 0 if K + L− I − J ≡ 0 (mod G).

I We can write each of these tensors using a reduced form and an irrep map,

waA,bB,iI,jJ = r
(W)
aA,bB,iI,jmABIJ

where mABIJ = 1 if A+B − I − J ≡ 0 (mod G) and mABIJ = 0 otherwise

Fast Algorithms for Contraction with Group Symmetry
I The irrep map tensor describes the cyclic group and has a lot of structure

I From definition, mABIJ = 1 if A+B − I − J ≡ 0 (mod G) and mABIJ = 0
otherwise, we see there are O(G3) nonzeros

I No matter the order of M or the ordering of indices, it will have a tensor train
decomposition of rank G, in particular,

mABIJ = m
(1)
ABQm

(2)
QIJ where m

(1)
ABQ = 1 i� A+B ≡ Q (mod G), etc.,

I We can then also define a reduced form relative to an auxiliary index in such a
decomposition, e.g.,

waA,bB,iI,jJ =
∑
Q

r
(W)
aA,bB,iQ,jm

(1)
ABQm

(2)
QIJ

I By defining consistent reduced forms using auxiliary indices, we can e�ciently
contraction group symmetric tensors via set of dense symmetric contractions

Fast Algorithms for Contraction with Group Symmetry

I We can represent the special reduced form via a tensor diagram

I Given a consistent choice of intermediate index in the two operand tensors,
they can be unified

Fast Algorithms for Contraction with Group Symmetry

I After the indices are matched, we can contract e�ciently

r
(W)
aA,b,i,jJ,Q =

∑
k,l,L

r
(U)
aA,b,k,lL,Qr

(V)
k,lL,i,jJ,Q

I Naive contraction of original tensors had cost O(n6)

I New algorithm has cost O(n6/G2)

I Factor of G2 improvement attainable for also for other (higher order)
contractions

Bilinear Algorithm for Contraction with Group Symmetry
I A group symmetric contraction is a bilinear algorithm

I Can view the contraction in a nested fashion as

K(W)
ABIJ =

∑
KL

K(U)
ABKL ·K

(V)
KLIJ

where F = K(U)
ABKL ∈ Rn×n×n×n and G = K(V)

ABKL ∈ Rn×n×n×n, so that
H = F · G gives

habij =
∑
kl

fabklgklij =
∑
kl

uaA,bB,kK,lLvkK,lL,iI,jJ

I Therefore, it su�ces to find a bilinear algorithm for the first contraction of
G×G×G×G tensors

k
(W)
ABIJ =

∑
KL

k
(U)
ABKL · k

(V)
KLIJ

with the same sparsity as irrep maps M(U), M(V), and M(W)

I An algorithm for the full contraction can then be constructed by nesting with a
standard blockwise contraction

Bilinear Algorithm for Contraction with Group Symmetry
I The group symmetric contraction algorithm leverages a CP decomposition

I The tensor defining the bilinear problem group symmetric contraction can be
written as

TABIJ,ÂB̂KL,K̂L̂ÎĴ = δA+B,I+JδA+B,−K−L
∏

X∈{A,B,I,J,K,L}

δ(X, X̂)

I Using the CP decomposition obtained via the identity
δA+B,I+JδA+B,−K−L =

∑G
Q=1 δAB,QδIJ,Qδ−K−L,Q, we can define a bilinear

algorithm of rank G4 that acts as follows

k
(W)
ABIJ =

∑
ÂĴLQ

δA,ÂδJ,ĴδAB,QδIJ,Q

∑
B̂K

δ−K−L,Qk
(U)

ÂB̂KL


∑
ÎK̂

δÎĴ ,Qk
(V)

ÎĴK̂L



