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Bilinear Problems

> A number of basic numerical problems can be thought of as bilinear
functions associated with particular order 3 tensors

» matrix multiplication
» discrete convolution
» symmetric tensor contractions

» These problems admit nontrivial fast bilinear algorithms, which correspond
to low-rank CP decompositions of the tensors

» Strassen’s O(n'°22(7)) algorithm for matrix multiplication as well as all other
subcubic matrix multiplication

» The discrete Fourier transform (DFT), Toom-Cook, and Winograd algorithms for
convolution are also examples of bilinear algorithms

» We will review fast bilinear algorithms for all of these approaches, using
0-based indexing when discussing convolution



Bilinear Problems

> A bilinear problem for any inputs a € R and b € R* computes ¢ € R™ as
defined by a tensor T e R"xnxk

Ci = Z tl-jkajbk & cCc= f(T) (a, b)
.k

» Variants of discrete convolutions (linear convolution, correlation, cyclic
convolution) provide simple examples of T

» [Linear convolution

min(i,n—1)

lik+i—j=0
o= {0 : otherwise oAz Ztijkajbk - Z “sbid
gk j=max(0,5—n+1)

» Correlation obtained by transposing the first and last mode of the linear
convolution tensor
» Cyclic convolution has t;j, = 1 ifand only if k +i — j = 0 (mod n)



Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) A = (F(), F(B) F(©)) computes
c=FO(FYTa)o (FPTh),

where a and b are inputs and © is the Hadamard (pointwise) product.
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Bilinear Algorithms as Tensor Factorizations
> A bilinear algorithm corresponds to a CP tensor decomposition

R

o= Y 1O (S 1) (S
J k

r=1
R
~S S (S A )
i k r=1
R
=3 tirajon where i =S fi £V £
Jj ok r=1

» For multiplication of n x n matrices, we can define a matrix multiplication
tensor and consider algorithms with various bilinear rank
> Tisn? xn2xn?
» Classical algorithm has rank R = n?
» Strassen’s algorithm has rank R ~ n'°%2(7)



Strassen’s Algorithm

Strassen’s algorithm {Cm Con

My = (A11 + Azz) - (Bi11 + Bag)
M, = (A21 + Az) - Bix
M3 = Ay - (B2 — Bag)
M,y = Az - (B21 — B11)
Ms = (Ai1 + Ai12) - Bao
Mg = (A21 — A11) - (Bi1 + Bi2)
M7 = (A2 — Agz) - (B21 + Ba2)

By performing the nested calls recursively, Strassen’s algorithm achieves cost,

Cu CIQ] _ |:

B;; B
By1  Ba

C11 = My + My — M5 + M~
Co = M> + M,
Ci2 = M3 + M5
Ca = My — M> + M3 + Mg

T(n) = 7T(n/2) + O(n?) = O(7'°%2") = O(nl&27)



Fast Bilinear Algorithms for Convolution
» Linear convolution corresponds to polynomial multiplication

> Let a and b be coefficients of degree n — 1 polynomial p and degree k — 1
polynomial q then

n+k—1 min(i,n—1)

(p-q)(x)= > cia' where ¢; = 3 a;bi_;
=0

j=max(0,i—n+1)
» This view motivates algorithms based on polynomial interpolation

» The Toom-Cook convolution algorithm computes the coefficients of p - g by
computing (p- q)(z;) fori € {1,...,n+ k — 1} and interpolates

> LetV, be a (n+ k — 1)-by-r Vandermonde matrix based on the nodes =, so that

Voa = [p(z1), -, plensr-1)]7, etc.
» Then to evaluate p and q at x and interpolate, we compute

c=Voh (Vaa) ® (Vib))

which is a bilinear algorithm



Toom-Cook Convolution and the Fourier Transform

» Vandermonde matrices are ill-conditioned with real nodes, but can be
perfectly conditioned with complex nodes

» The condition number of a Vandermonde matrix with real nodes is exponential
in its dimension

» Choosing the nodes x to be the complex roots of unity gives the discrete Fourier
transform (DFT) matrix D™, déz) = wi* where w,, = >/
» Modulo normalization DFT matrix is orthogonal and symmetric (not Hermitian)

» The fast Fourier transform (FFT) can be used to perform products with the
DFT matrix in O(nlogn) time Taking D™ to be the ny x ny (for n = niny)
leading minor of D,, we can compute y = D™ via the split-radix-n, FFT,

n/2—-1 n/2 1

Yk = sz = Z 96‘2zwn/2 + w Z 1‘2z+1wn/2

ny—1 no—1
Ylkm ) = Z Wffl [wik Z x(ml_’_s)w;ﬁ] =Y = ([D(") ® (D(nz)A)]D(m))T



Cyclic Convolution via DFT
» For linear convolution D(*+*=1) js used, for cyclic convolution D™ suffices

> Expanding the bilinear algorithm, y = D™ ' (D™ f) @ (D™g)), we obtain

n—1 n—1 n—ln—1n—1

Zw"“<2w” )(;%%%) = Zzzw%ﬂ ' fige

10;0750

» It suffices to observe that for any fixed w = j +t — k # 0 or # n, the outer
summation yields a zero result, since the geometric sum simplifies to

Z%) = (1= (wiy)")/(1 = wiy) =0

» The DFT also arises in the eigendecomposition of a circulant matrix
> The cyclic convolution is defined by the matrix-vector product y = C )b where

Cla) = l L 1
e w

> The eigenvalue decomposition of this matrix is C(qy = D™ ™" diag(D™a) D™



Winograd’s Algorithm for Convolution

» The DFT/FFT requires complex arithmetic, motivating alternatives such as
the more general Winograd family of algorithms

» In Winograd’s convolution algorithm, the remainder of the product v = pq is
computed using k distinct polynomial divisors, m'9), whose product is the
polynomial M with deg(M) > deg(v)

» The k polynomial divisors, m™") m® ... m®*) must be coprime
» From the k remainders, u) = pg mod m' the remainder v = pg mod M is
recovered via the Chinese remainder theorem
» The theorem leverages Bézout’s identity, which states that there exist
polynomials nY) and N such that, for M) = M/m®,
MONG L p@0p@) — 1

which allow us to construct v
k
V= (Zu(i)M(i)N(i)) mod M
=1

» Toom-Cook algorithms are special cases of Winograd’s convolution algorithm,
where the polynomial divisors are m") (z) = x — x;, where x; are nodes



Algebraic Formulation of Winograd’s Algorithm for Convolution

» Winograd’s convolution algorithm can be written as a bilinear algorithm by
defining appropriate linear transformations

» Linear convolution corresponds to a product with a Toeplitz matrix, ¢ = T, 1,yb
where T iy € R"TF=1xF js

An—1

> Let X, 4y € C%®9m)*(4+1) pe g matrix that computes the coefficients of p = p
(mod m) when multiplied by coefficients of degree d polynomial p, p = X (, ayp
X(m}d) = [I 7LU71]

where I is an identity matrix of dimension deg(m), L contains the top deg(m)
rows Of Ty, d—deg(m)+1), @nd U contains the bottom d + 1 rows of

T(m,d—deg(m)+1)



Algebraic Formulation of Winograd’s Algorithm for Convolution

> Given an operator X, o € C8(mx*(4+1) to compute coefficients of p = p
(mod m), we can efficiently compute

pq mod m = (p mod m)(g mod m) mod m,

X (11 deg(p)+deg(q)—1) (P * @) = X(m.2deg(m)—1) (X (m.degp))P) * (X(m.deg(q))q))

> Further, given a bilinear algorithm (A, B, C) to compute linear convolution of
two m-dimensional vectors, we can obtain a bilinear algorithm
(Xg;nydeg(p»A, Xz;nﬂeg(q»B? X (1m,2deg(m)—1)C) to compute p = pq mod m, since

P = X (m.2deg(m)-1)C (AT X (11 deg(p)P) @ (BT X (11, deg(4))q))-



Algebraic Formulation of Winograd’s Algorithm for Convolution

» Winograd’s convolution algorithm effectively merges smaller bilinear
algorithms for linear convolution

> Given M = ["_, m® where deg(M) = n +r —1and m™®, ... m®) are
coprime, as well as (AW, B, C®) fori e {1,...,k}, where (A®, B® C®) js
a bilinear algorithm for linear convolution of vectors of dimension deg(m®)

» Winograd’s convolution algorithm yields a bilinear algorithm (A, B, C) for
computing linear convolution with vectors of dimension r and n, where

A= {X&(l)mﬂ)A(l) X<Tm<k>,r71>A(k)} ,
B = {X(q;n(l),n—l)B(l) e X(T;n(k)ﬂ—l)B(k)} 7and
c=[CVH ... CW]

where C) = X 1/ deg(n1)+deg(m®)—2) T(e® deg(m()y X (m(®) 2deg(my—1yC'" and
e are coefficients of polynomial e = M® N mod M.



Algebraic Formulation of Winograd’s Algorithm for Convolution

> A missing piece of the above formulation is how to realize Bézout’s identity
to compute N@ and e®

> () = MON® mod M so it suffices to compute n) and N then apply
previously mentioned linear transformations

» The extended Euclidian algorithm can be used for this task, or one can solve a

linear system
> The coefficients of polynomials N and # satisfying M N + rn = 1 for coprime M
and m are
1
N -110
{ﬁ} = [T(M,deg(m)—l) T deg (i) 1)



Nested Bilinear Algorithms for Convolution
» 2D convolution is equivalent to nested 1D convolution
» Given F € R™" and G € R™"*"™, the 2D linear convolution Y = F x G with
Y € R(n+r—1)x(n+r—1) gives
min(a,r—1) min(b,r—1)

Yab = > > fij9a—ib—j

i=max(0,a—n+1) j=max(0,b—n+1)

» 2D bilinear problem is defined by tensor T\*P) = T @ T where © is the natural
generalization of Kronecker product to tensors

» 1D convolution can be reduced to 2D convolution with some work
» For linear convolution, with vectors of dimension n = st can reduce to s x t 2D

convolution to obtain rank (2s — 1)(2t — 1) bilinear algorithm via overlap-add
technique, which computes partial sums of the result of the 2D convolution

» For cyclic convolution, Agarwal-Cooley algorithm uses the Chinese remainder
theorem for integers to decouple dimension n = st convolution to s x t 2D cyclic
convolution via permutations

» For more details on the above derivations and a broader survey of
convolution algorithms, see https://arxiv.org/abs/1910.13367


https://arxiv.org/abs/1910.13367

Symmetric Tensor Contractions

» Bilinear algorithms can also be used to accelerate tensor contractions for
tensors with symmetry

» Recall a symmetric tensor is defined by e.g., tiji, = tikj = thij = tjki = tjik = tji
» Tensors can also have skew-symmetry (also known as antisymmetry,
permutations have +/— signs), partial symmetry (only some modes are

permutable), or group symmetry (blocks are zero if indices satisfy modular
equation)

» The simplest example of a symmetric tensor contraction is
y=Ax where A= AT

it is not obvious how to leverage symmetry to reduce cost of this contraction

» Bilinear algorithms for symmetric tensor contractions exist with lower rank
than their nonsymmetric counterparts

> Symmetric matrix-vector product can be done with n(n + 1)/2 multiplications
» Cost of contractions of partially symmetric tensors reduced via this technique



Symmetric Matrix Vector Product

» Consider computing ¢ = Ab with A = AT
> Typically requires n* multiplications since a;;b; # a;;b; and n* — n additions
» Instead can compute

i—1 n

V; = Zuij + Z Uj; where Uiy = aij(bi + bJ)

j=1 j=i+1

using n(n — 1)/2 multiplications (since we only need w;; for i > j) and about
3n?/2 additions, then

¢ = (2ai; — Z aij)bi + v;
j=1
using n more multiplications and n? additions
» Beneficial when multiplying elements of A and b costs more than addition
> This technique yields a bilinear algorithm with rank n(n + 1)/2



Partially-Symmetric Tensor Times Matrix (TTM)
» Can use symmetric mat-vec algorithm to accelerate TTM with partially
symmetric tensor from 2n* operations to (3/2)n* 4+ O(n?3)
> Given A € R™*™*™ with symmetry a;;i, = aj;;, and B € R"*", we compute

Cikl = E aijkbji
J

» We can think of this as a set of symmetric matrix-vector products
cBD — AR D

and apply the fast bilinear algorithm

i—1 n
Vil = Zuijkl + Z uije where  wijn = aijr(ba + bj1)

= j=it1
n

Citl = (2045 — E @ijk)bit + Vi
i=1

using about n* /2 multiplications and n* + O(n?) additions (need only n? distinct
sums of elements of B) to compute V, then O(n?) operations to get C from V



Computing Symmetric Matrices

» Output symmetry can also be used to reduced cost, for example when
computing a symmetrized outer product C = ab” + ba”

» C = C7 so suffices to compute cij fori > j, ¢ij = a;bj + ajb;
» To reduce number of products by a factor of 2, can instead compute

Cij = (CLZ‘ + (lj)(bi + bj) — VU — where v; = a;b;

» To symmetrize product of two symmetric matrices, can compute
anticommutator, C = AB + BA

> Each matrix can be represented with n(n + 1)/2 elements, but products all n?
products a;;by; are distinct (so typically cost is 2n3)
» Cost can be reduced to n3/6 + O(n?) products by amortizing terms in

Cij = Z(aij + a;r + @jk)(bij + bk + bjk) — naq;jbij

%
- (Zaik + ajk)bij - aij(zbik + bjk) - Zaikbik - Z ajkbjk
k k k k



General Symmetric Tensor Contractions

» We can now consider the cost of a symmetrized contraction over v indices of
symmetric tensors .A (of order s + v) and B (of order v + t)

C;t

R E E iy iy ko koo Okt ko 1 e

{1125,]1]t}el'[(z’1z’s,gigg) ki...ky

where 11 gives all distinct partitions of the s + t indices into two subsets of
size sandt, e.g.,

(i1, j1j2) = {{i1, J1je}, {71, t1j2}, {J2, 1171} }

» Such tensor contractions can be done using
ST /(s +t +v)! + O(n* Tt =1) products

» General algorithm looks similar to anticommutator matrix product

» After multiplying subsets of operands, unneeded terms are all computable with
O(n*Ttv=1) products

» These approaches correspond to bilinear algorithms of this rank



Hankel Matrix Vector Product
» A Hankel matrix is a reflection of a Toeplitz matrix (which can similarly be
used to compute convolution),

hi1  hz  h3
ha  h3

H = hs

» Hankel matrices are symmetric across blocks and Hankel within blocks
H, HQ}
H, H;
but not vice versa, i.e., some elements in H, must be the same as in Hs
» Can compute Hankel mat-vec by applying symmetric mat-vec recursively
» Forn = 2 fast bilinear algorithm requires n(n + 1)/2 = 3 products
» Additions of Hankel matrices and vector entries can be done in O(n) time, so

T(n) = 3T(n/2) + O(n) = O(n'*e2(3)

» This complexity is as good as the recursive application of Toom-Cook, but
O(nlogn) can be achieved via FFT or other techniques

|



Group Symmetry

» Tensors arising in physical simulations often have group structure that
reflects conservation laws

» Abelian group symmetries can be mapped to cyclic group, which can be used to
define a block-sparse form of the tensors (here represented using extra modes)

» A particularly common/important contraction with cyclic group symmetry is

WaAbB,il,j] = E UqA,bB,kK,ILVKK,IL,I,jJ-
k,K,l,L

where for some group size G, we have symmetries, e.g.,
WA pB,il,jg Z0ifA+B—-1—-J=0 (modG),
UaApBkiiL ZO0IFA+B+K+L=0 (mod G),
ki Liljg #0fK+L—1—J=0 (modQG).

» We can write each of these tensors using a reduced form and an irrep map,

W)
WaAbB,il,jJ = TaAbBiI,;TVABIJ

where mapry =1ifA+ B —1—J=0 (mod G) and mupr; = 0 otherwise



Fast Algorithms for Contraction with Group Symmetry

» The irrep map tensor describes the cyclic group and has a lot of structure

» From definition, map;; =1if A+ B—1—J =0 (mod G) and magr; =0
otherwise, we see there are O(G?®) nonzeros
» No matter the order of M or the ordering of indices, it will have a tensor train
decomposition of rank G, in particular,
_ (1) (2) ) ; —
MABI) = MypoMary; where mypo =1 iff A+B=Q (modG), etc,
» We can then also define a reduced form relative to an auxiliary index in such a
decomposition, e.g.,
(W) 1) (2)

WaAbB,il,jJ = E :TaA,ijQ,ijBQmQIJ
Q

» By defining consistent reduced forms using auxiliary indices, we can efficiently
contraction group symmetric tensors via set of dense symmetric contractions



Fast Algorithms for Contraction with Group Symmetry

» We can represent the special reduced form via a tensor diagram
A 1 A 1 A 1

— e — e — f
5 R L B !

P—

» Given a consistent choice of intermediate index in the two operand tensors,
they can be unified

K
A I A K I

oy e fm— e
B L L B o )




Fast Algorithms for Contraction with Group Symmetry

> After the indices are matched, we can contract efficiently
A K | A 1

— fm—— e o
5 - 'S !

=D )
adbij 1@ = 2 TadbkILQ ILjIQ
kL

» Naive contraction of original tensors had cost O(nf)

> New algorithm has cost O(n%/G?)

» Factor of G? improvement attainable for also for other (higher order)
contractions



Bilinear Algorithm for Contraction with Group Symmetry
» A group symmetric contraction is a bilinear algorithm
» Can view the contraction in a nested fashion as

(V)
ABIJ = Z KABKL Kxirs

where F = KJABKL € Rm>nxnxnand G = IC%B)KL € Rmxnxnxnso that
H =F -G gives

havij; = E Sabkigrii; = E UaA,bB,kK,ILVKK,IL,il,jJ
ol

» Therefore, it suffices to find a bilinear algorithm for the first contraction of
G x G x G x G tensors

W) V)
k,(axBIJ = Z kABKL kg{LIJ
with the same sparsity as irrep maps MY, MY) and M)

» An algorithm for the full contraction can then be constructed by nesting with a
standard blockwise contraction



Bilinear Algorithm for Contraction with Group Symmetry
» The group symmetric contraction algorithm leverages a CP decomposition
» The tensor defining the bilinear problem group symmetric contraction can be
written as

TyprsiBKrr iiij = OA+BI+I0A+B,~K—L 11 i(X, X)
X€{A,B,I,J,K,L}

» Using the CP decomposition obtained via the identity
5A+B7I+J5A+B7_K_L = Zg:l 6AB’Q6]J’Q(;_K_L7Q, we can define a bilinear
algorithm of rank G* that acts as follows

w U
k,(ch)IJ = Z 04,497 7948,Q017,Q (Z 6—K—L7Qk,(41§)KL)

AJLQ BK

(V)
(Z 51J ,Q IIKL)



