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Matrix Eigenvalues

» The eigenvalue and singular value decompositions of matrices enable not
only low-rank approximation (which we can get for tensors via
decomposition), but also describe important properties of the matrix M and
associated linear function f(™)(z) = M«

> Eigenvalues and eigenvectors can be used to characterize eigenfunctions of
differential operators

> Eigenvalues describe powers of the matrix and its limiting behavior
M=XDX'! = M?=XD*x"!

if there is a unique largest eigenvalue \ with associated left/right eigenvectors
are x, y then
lim MY/ M| = Aay
—00

» They can be used to find stationary states of statistical processes and to find
low-cut partitions in graphs



Tensor Eigenvalues
» Tensor eigenvalues and singular values can be defined based on the function
F£(T) by analogy from the role of matrix eigenvalues on f()

> Matrix eigenpairs (\, x) satisfy fM)(x) = Az, while for an order d symmetric
tensor, we may define’+?
FTDe,....x)= e (e ... )= et FD(x,. .. x)=> P!

Z-eigenpair H-eigenpair lP-eigenpair

where P = [} ... 2P]T

> For matrices, Z-eigenpairs (IP-eigenpairs with p = 1) and H-eigenpairs
(IP-eigenpairs with p = d — 1) are the same

> Singular value/vector pairs can be defined by a tuple (o, x1,...,x4) that
satisfies d equations like f(7) (xy, ... xq) = ox?, e.g., ford = 3,p = 1,

T(l)(a‘ig ® :133) =0, T(Q) (:l!l ®:B3) = 00X, T(g)(:.l‘ﬁl ®:132) = 0XI3

"Liqun Qi, “Eigenvalues of a Real Supersymmetric Tensor”, 2005
2Lek-Heng Lim, “Singular Values and Eigenvalues of Tensors: A Variational Approach”, 2005



Matrix Eigenvalues and Critical Points
» The eigenvalues/eigenvectors of a matrix are the critical values/points of its
Rayleigh quotient3
> The Lagrangian function of f(x) = =7 Ax subject to |x|3 = |z|]2|x|> = 1 is
L(z,\) =z Az — A(Jz|3 - 1)
> The first-order optimality condition are ||z|2> = 1 and
dac
dx
» Singular vectors and singular values of matrices may be derived analogously

(x,\)=0 = Az=)\x

» The Lagrangian function of f(x,y) = = Ay subject to ||z||z||y|2 = 1 is
L(z,y,0) =z" Ay — o(|z|2]yl> - 1)
> The first-order optimality conditions are |x|2|y|2 = 1 and
dl Ay oz dL Ax oy

7(x7ya0-)20 T T 7($7ya0)20 = T =T
dx lyl =)™ dy Iz ~ Tyl

3Lek-Heng Lim, “Singular Values and Eigenvalues of Tensors: A Variational Approach”, 2005



Tensors Eigenvalues
» The Lagrangian approach to matrix eigenvalues generalizes naturally to
symmetric tensors

> The symmetric tensor is associated with a multilinear scalar-valued function
ST @) =3, tis,.iaTi, -+ - i, as well as the vector valued function

f(T) (w) = Zil,...id,l bir,oiama Tiy = Tigy = évf(’r)(w)

> We consider its Lagrangian subject to a normalization condition ||x|| g =1 (for
matrices p = 2, so for order d tensors natural to pick either p = 2 or p = d),

L(z,A) = f(x) = M|zl —1)

> The first order optimality conditions for p = 2 is ||| = 1 and

%(m,)\) =0 = f(T)(:c) = \x
> The analogous first order optimality condition for p = d and even p is
dL

%(w, AN=0 = fD(z)=rz??

is scale invariant (if (x*, \) minimizes L so does (ax*,\))



Tensor Singular Values and Singular Vectors
» Tensor singular values again can be viewed as critical points of the
Lagrangian function of the multilinear map given by a tensor

> An order d tensor is associated with a multilinear sca/ar-valued function
T 1 d (d)
FM @D, 2®) Z tiy, g @2l

as well as d vector valued functions
@) df('r)(:c(l)7 .. 7ar:(d))
’ ’ dx(®)
eq., fl(T) (@, () = Ty (z? ® z®)
> We consider its Lagrangian subject to a normalization condition

FT @, & (M, &D . 2@

lz1llp - [zalp, =1
£(581, me - ,Il;'d,O') = f(scla s ,Il?d) - U(leup e de”P - 1)
> The first order optimality conditions for even p are, for all i in {1,...,d},
dL
(z1,...,xg,0) =0 = fi(T)(:cl,...,ii,...,a:d) = ol

da:i



Immediate Properties of Tensor Eigenvectors and Singular Vectors
» When the tensor order d is odd, H-eigenvectors (I?-eigenvectors) and
singular vectors must be defined with additional care

> Let ¢,(x) = [sgn(z1)2y, ..., sgn(zy,)zE]T then can generally write

V], = ¢p—1(z)/|2]p~
when p is even, ¢,_1(xz) = P!
> The eigenvalue equations can then be we written for general p as
acr

@M =0 = f7(@) =g

» The largest tensor singular value is the operator/spectral norm of the tensor

> Recall we defined the operator norm of the tensor as

|7 = max  |fT(xy,...,2q))|

x1,..., xryeSn—1
where S*~1 js the unit sphere (norm-1 vectors)

> This value corresponds to the largest [? tensor singular value, or in the
symmetric case, the largest magnitude of any of the tensor Z-eigenvalues



Eigenvalues of Nonsymmetric Tensors

» For nonsymmetric matrices case, the Lagrangian approach used above
cannot be used to describe the eigenvalues
> The eigenvalues of a real nonsymmetric matrix may be complex

> For tensors, we can still define the eigenvalue equations in a consistent way
with respect to matrices,

D (@,... @) = App(x)

so that A\, x are the mode-i an IP-eigenpair
> For matrices, the mode-1 and mode-2 ?>-eigenvectors are the left/right
eigenvectors



Connection Between Decomposition and Eigenvalues

» In the matrix-case, the largest magnitude eigenvalue and singular value may
be associated with a rank-1 term that gives the best rank-1 decomposition
of a matrix

> For symmetric matrices, it suffices to consider the dominant eigenpair

> For nonsymmetric matrices, a rank-1 truncated SVD gives the largest singular
vector/value pair and associated rank-1 approximation

» In the tensor case, the rank-1 approximation problem corresponds to a
maximization problem?

> Given a nonsymmetric tensor T the rank-1 tensor decomposition objective is

min 1T —ouV @ - @u?|%

w@) . uldesn—1

> The problem is equivalent to the maximum [%-singular value problem for T

max o st Vv, fi(T) (u(l)7 R AN ,u(d)) = oul?,
w@) . uldeSn—1

“4L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(R1, Ra,..., R»)
approximation of higher-order tensors”, 2000



Derivation of Equivalence
» The singular value problem can be derived from decomposition via the
method of Lagrange multipliers

» In general, consider the Lagrangian function
LW, uD o) = T -ou®- ®u(‘”HF+ZA Ol 3 - 1))
J

> For order 3, we have
L(u,v,w,0,A) = [T —ocu@v@w|%+ A\ (u"u—1)+ X (vTv—1) + A3 (w w—1)

> The optimality conditions give
acr T

— =0 = wuwuu=1, 'UT'U:I, wlw=1
dA

%:O = fMD(u,v,w) =0

do

d

%:0 = gfl(T)(v,w)=(02+/\1)u

and similar for %, 9% premultiplying the last condition by u , gives the second
modulo A\, S0 A\ = O, giving the singular value equation f1 (v, w) = ou.



Hardness of Eigenvalue Computation
» Like rank-1 approximation, computing eigenvalues of singular values of a
tensor is NP-hard, which can be demonstrated by considering the tensor
bilinear feasibility problem®
> Restricting the tensor to be symmetric still leads to NP-hard problems, the
largest singular vector will be the largest eigenvector a result of Banach®

max f(T)(a:,y,z)z max f(T)(a:,a:,m)
@y, zeSn 1 weSn—1

> The tensor bilinear feasibility problem associated with an order 3 tensor T is
defined by the set of equations

fl(T) ('v,'w) =0, 2(T) (u7 w) =0, f?ET)(ua ’U) =0

where we seek solutions u,v,w # 0
> This problem is a special case of the IP singular value problem for any choice of
pwitho =0

5C.J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard”, 2013
65. Banach, “On homogeneous polynomials in L?”, 1938



Hardness of Eigenvalue Computation

» NP-hardness of the tensor bilinear feasibility problem can be demonstrated
by reduction from 3-colorability

> The 3-coloring problem seeks to find (if possible) an assignment of one of 3
colors to each vertex of a graph that is different from the color of any of its
neighbors

> We define an optimization problem over a set of variables x € C™ that describe
the color (each will take on a power of the third root of unity), as well as
auxiliary variables y € C™, z min C, then define the bilinear equations

Vie{l,...,n}, xiyi—2°=0, yz—a?=0, x;2—9y?=0

Vie{l,...,n}, Z :L'f—l—ximj—k:c?
e —
(i,J)eE ar s

> Assume (normalize) so that = = 1, then the first set of equations implies

yi = 1/z; and further z3 = 1, so labels are cubic roots of unity
> For the second set of equations, we then must have x; # x; if (i,j) € E



Power Method for Singular Value Computation

» The high-order power method (HOPM) can be used to compute the largest
singular value’
> The algorithm updates factors in an alternating manner until convergence, with

the ith factor matrix updated as
1. v = f(T>(u<1), oA u(d>),

k3

2. 0= H’U(i)HQ
3. uf,?w = v(i)/a
> The algorithm can be derived from the Lagrangian and converges to a local
minimum
> Effective initialization can be achieved by HOSVD and the algorithm is equivalent
to the rank-1 version of the HOOI procedure

’L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(Ry, Ra,..., R»)
approximation of higher-order tensors”, 2000



Power Method for Symmetric Eigenvalue Problems

» The HOPM algorithm can be adapted to symmetric tensors

> The aforementioned Banach’s polynomial maximization theorem implies HOPM
will converge to symmetric solution even if intermediate results are
nonsymmetric

» If symmetry is enforced on the iterates, so that
T
v= D) =7 (u,...,u), u™ =/,

the algorithm is no longer guaranteed to converge (it does if the tensor order is
even and the underlying function is convex)

> The shifted symmetric HOPM method® alleviates this problem and enables
convergence to other eigenvalues by adding a shift so as to minimize
F ) (u) + a(uTw)¥? for order d tensor T, yielding to updates such as

v=fD(u) +au, "™ =v/|u],

8T.G. Kolda and J.R. Mayo, “Shifted Power Method for Computing Tensor Eigenpairs”, 2011



Perron-Frobenius Theorem for Tensor Eigenvalues

» The Perron-Frobenius theorem states that positive matrices have a unique
real eigenvalue and the associated eigenvector is positive

> Can be extended to nonnegative matrices so long as matrix in not reducible, i.e.,
cannot be put into the form

0 G

where P is a permutation matrix and G has at least 1 row
> This theorem is prominent in the study of nonsymmetric matrices

» Its applications include analysis of stochastic processes and algebraic graph
theory

» Tensor eigenvalues satisfy a generalized Perron-Frobenius theorem
» If tensor is positive, the eigenvector with the largest eigenvalue is positive

> A nonnegative order d tensor is irreducible if there is no d-dimensional blocking
into 2¢ blocks that yields an off-diagonal zero block

> For further properties, see LH Lim, “Singular Values and Eigenvalues of Tensors:
A Variational Approach”, 2005 and Q Yang, Y Yang, “Further results for
Perron-Frobenius theorem for nonnegative tensors II”, 2011

PAP-! — [E F}



Tensor Eigenvalues and Hypergraphs
» Matrix eigenvalues are prominent in algebraic graph theory

> For an unweighted graph we typically consider a binary adjacency matrix A or
the Laplacian matrix D — A where D is a diagonal degree matrix

> The eigenvector with the second smallest eigenvalue can be used to find a
partitioning of verticies with a provably small cut value

> Clustering can be done via constrained low-rank approximations methods

» Tensor eigenvalues can be used to understand partitioning/clustering
properties of uniform hypergraphs®

> A uniform hypergraph H = (V, E) is described by a set of vertices V and a set of
hyperedges E, each of which is a subset of r vertices in E

> Each hyperedge (v;,v;,vi) € E may be associated with a tensor entry t;

> Laplacian-like choice of t;;;, yields symmetric and semidefinite tensor

> The tensor must have a zero eigenvalue and the multiplicity of the zero
eigenvalue is the number of components in the hypergraph

> The second smallest eigenvalue lower bounds the minimum cut of H

9J. Chang, Y. Chen, L. Qi, H. Yan, "Hypergraph Clustering Using a New Laplacian Tensor with
Applications in Image Processing”, 2019
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