CS 598 EVS: Tensor Computations

Tensor Eigenvalues

Edgar Solomonik

University of Illinois at Urbana-Champaign

Matrix Eigenvalues

- The eigenvalue and singular value decompositions of matrices enable not only low-rank approximation (which we can get for tensors via decomposition), but also describe important properties of the matrix \boldsymbol{M} and associated linear function $\boldsymbol{f}^{(\boldsymbol{M})}(\boldsymbol{x})=\boldsymbol{M} \boldsymbol{x}$
- Eigenvalues and eigenvectors can be used to characterize eigenfunctions of differential operators
- Eigenvalues describe powers of the matrix and its limiting behavior

$$
\boldsymbol{M}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1} \quad \Rightarrow \quad \boldsymbol{M}^{2}=\boldsymbol{X} \boldsymbol{D}^{2} \boldsymbol{X}^{-1}
$$

if there is a unique largest eigenvalue λ with associated left/right eigenvectors are x, y then

$$
\lim _{k \rightarrow \infty} \boldsymbol{M}^{k} /\left\|\boldsymbol{M}^{k-1}\right\|=\lambda \boldsymbol{x} \boldsymbol{y}
$$

- They can be used to find stationary states of statistical processes and to find low-cut partitions in graphs

Tensor Eigenvalues

- Tensor eigenvalues and singular values can be defined based on the function $\boldsymbol{f}^{(\mathcal{T})}$ by analogy from the role of matrix eigenvalues on $f^{(M)}$
- Matrix eigenpairs (λ, x) satisfy $f^{(M)}(\boldsymbol{x})=\lambda \boldsymbol{x}$, while for an order d symmetric tensor, we may define ${ }^{1,2}$

$$
\underbrace{\boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{x}, \ldots, \boldsymbol{x})=\lambda \boldsymbol{x}}_{\text {Z-eigenpair }} \quad \underbrace{\boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{x}, \ldots, \boldsymbol{x})=\lambda \boldsymbol{x}^{d-1}}_{\text {H-eigenpair }} \quad \underbrace{\boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{x}, \ldots, \boldsymbol{x})=\lambda \boldsymbol{x}^{p-1}}_{l^{p} \text {-eigenpair }}
$$

where $\boldsymbol{x}^{p}=\left[x_{1}^{p} \ldots x_{n}^{p}\right]^{T}$

- For matrices, Z-eigenpairs (l^{p}-eigenpairs with $p=1$) and H-eigenpairs (l^{p}-eigenpairs with $p=d-1$) are the same
- Singular value/vector pairs can be defined by a tuple ($\sigma, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d}$) that satisfies d equations like $\boldsymbol{f}^{(\mathcal{T})}\left(\boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{d}\right)=\sigma \boldsymbol{x}_{1}^{p}$, e.g., for $d=3, p=1$,

$$
\boldsymbol{T}_{(1)}\left(\boldsymbol{x}_{2} \otimes \boldsymbol{x}_{3}\right)=\sigma \boldsymbol{x}_{1}, \quad \boldsymbol{T}_{(2)}\left(\boldsymbol{x}_{1} \otimes \boldsymbol{x}_{3}\right)=\sigma \boldsymbol{x}_{2}, \quad \boldsymbol{T}_{(3)}\left(\boldsymbol{x}_{1} \otimes \boldsymbol{x}_{2}\right)=\sigma \boldsymbol{x}_{3}
$$

[^0]
Matrix Eigenvalues and Critical Points

- The eigenvalues/eigenvectors of a matrix are the critical values/points of its Rayleigh quotient ${ }^{3}$
- The Lagrangian function of $f(\boldsymbol{x})=\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}$ subject to $\|\boldsymbol{x}\|_{2}^{2}=\|\boldsymbol{x}\|_{2}\|\boldsymbol{x}\|_{2}=1$ is

$$
\mathcal{L}(\boldsymbol{x}, \lambda)=\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-\lambda\left(\|\boldsymbol{x}\|_{2}^{2}-1\right)
$$

- The first-order optimality condition are $\|\boldsymbol{x}\|_{2}=1$ and

$$
\frac{d \mathcal{L}}{d \boldsymbol{x}}(\boldsymbol{x}, \lambda)=\mathbf{0} \quad \Rightarrow \quad \boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

- Singular vectors and singular values of matrices may be derived analogously
- The Lagrangian function of $f(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{y}$ subject to $\|\boldsymbol{x}\|_{2}\|\boldsymbol{y}\|_{2}=1$ is

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}, \sigma)=\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{y}-\sigma\left(\|\boldsymbol{x}\|_{2}\|\boldsymbol{y}\|_{2}-1\right)
$$

- The first-order optimality conditions are $\|\boldsymbol{x}\|_{2}\|\boldsymbol{y}\|_{2}=1$ and

$$
\frac{d \mathcal{L}}{d \boldsymbol{x}}(\boldsymbol{x}, \boldsymbol{y}, \sigma)=\mathbf{0} \quad \Rightarrow \quad \frac{\boldsymbol{A} \boldsymbol{y}}{\|\boldsymbol{y}\|}=\frac{\sigma \boldsymbol{x}}{\|\boldsymbol{x}\|}, \quad \frac{d \mathcal{L}}{d \boldsymbol{y}}(\boldsymbol{x}, \boldsymbol{y}, \sigma)=\mathbf{0} \quad \Rightarrow \quad \frac{\boldsymbol{A} \boldsymbol{x}}{\|\boldsymbol{x}\|}=\frac{\sigma \boldsymbol{y}}{\|\boldsymbol{y}\|}
$$

[^1]
Tensors Eigenvalues

- The Lagrangian approach to matrix eigenvalues generalizes naturally to symmetric tensors
- The symmetric tensor is associated with a multilinear scalar-valued function $f^{(\mathcal{T})}(\boldsymbol{x})=\sum_{i_{1}, \ldots i_{d}} t_{i_{1}, \ldots, i_{d}} x_{i_{1}} \cdots x_{i_{d}}$ as well as the vector valued function $\boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{x})=\sum_{i_{1}, \ldots i_{d-1}} t_{i_{1}, \ldots, i_{d-1}} x_{i_{1}} \cdots x_{i_{d-1}}=\frac{1}{d} \nabla f^{(\mathcal{T})}(\boldsymbol{x})$
- We consider its Lagrangian subject to a normalization condition $\|\boldsymbol{x}\|_{p}^{d}=1$ (for matrices $p=2$, so for order d tensors natural to pick either $p=2$ or $p=d$),

$$
\mathcal{L}(\boldsymbol{x}, \lambda)=f(\boldsymbol{x})-\lambda\left(\|\boldsymbol{x}\|_{p}^{d}-1\right)
$$

- The first order optimality conditions for $p=2$ is $\|\boldsymbol{x}\|_{2}=1$ and

$$
\frac{d \mathcal{L}}{d \boldsymbol{x}}(\boldsymbol{x}, \lambda)=\mathbf{0} \quad \Rightarrow \quad \boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{x})=\lambda \boldsymbol{x}
$$

- The analogous first order optimality condition for $p=d$ and even p is

$$
\frac{d \mathcal{L}}{d \boldsymbol{x}}(\boldsymbol{x}, \lambda)=\mathbf{0} \quad \Rightarrow \quad \boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{x})=\lambda \boldsymbol{x}^{d-1}
$$

is scale invariant (if $\left(\boldsymbol{x}^{*}, \lambda\right)$ minimizes \mathcal{L} so does $\left(\alpha \boldsymbol{x}^{*}, \lambda\right)$)

Tensor Singular Values and Singular Vectors

- Tensor singular values again can be viewed as critical points of the Lagrangian function of the multilinear map given by a tensor
- An order d tensor is associated with a multilinear scalar-valued function

$$
f^{(\mathcal{T})}\left(\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(d)}\right)=\sum_{i_{1}, \ldots i_{d}} t_{i_{1}, \ldots, i_{d}} x_{i_{1}}^{(d)} \cdots x_{i_{d}}^{(d)}
$$

as well as d vector valued functions

$$
\begin{aligned}
& \qquad \boldsymbol{f}_{i}^{(\mathcal{T})}\left(\boldsymbol{x}^{(1)}, \ldots, \hat{\boldsymbol{x}}^{(i)}, \ldots, \boldsymbol{x}^{(d)}\right)=\frac{d f^{(\mathcal{T})}\left(\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(d)}\right)}{d \boldsymbol{x}^{(i)}}\left(\boldsymbol{x}^{(1)}, \ldots, \hat{\boldsymbol{x}}^{(i)}, \ldots, \boldsymbol{x}^{(d)}\right) \\
& \text { e.g., } \boldsymbol{f}_{1}^{(\mathcal{T})}\left(\boldsymbol{x}^{(2)}, \boldsymbol{x}^{(3)}\right)=\boldsymbol{T}_{(1)}\left(\boldsymbol{x}^{(2)} \otimes \boldsymbol{x}^{(3)}\right)
\end{aligned}
$$

- We consider its Lagrangian subject to a normalization condition

$$
\begin{aligned}
& \left\|\boldsymbol{x}_{1}\right\|_{p} \cdots\left\|\boldsymbol{x}_{d}\right\|_{p}=1 \\
& \qquad \mathcal{L}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d}, \sigma\right)=f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d}\right)-\sigma\left(\left\|\boldsymbol{x}_{1}\right\|_{p} \cdots\left\|\boldsymbol{x}_{d}\right\|_{p}-1\right)
\end{aligned}
$$

- The first order optimality conditions for even p are, for all i in $\{1, \ldots, d\}$,

$$
\frac{d \mathcal{L}}{d \boldsymbol{x}_{i}}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d}, \sigma\right)=\mathbf{0} \quad \Rightarrow \quad \boldsymbol{f}_{i}^{(\mathcal{T})}\left(\boldsymbol{x}_{1}, \ldots, \hat{\boldsymbol{x}}_{i}, \ldots, \boldsymbol{x}_{d}\right)=\sigma \boldsymbol{x}_{i}^{p}
$$

Immediate Properties of Tensor Eigenvectors and Singular Vectors

- When the tensor order d is odd, H-eigenvectors (l^{d}-eigenvectors) and singular vectors must be defined with additional care
- Let $\phi_{p}(\boldsymbol{x})=\left[\operatorname{sgn}\left(x_{1}\right) x_{1}^{p}, \ldots, \operatorname{sgn}\left(x_{n}\right) x_{n}^{p}\right]^{T}$ then can generally write

$$
\nabla\|\boldsymbol{x}\|_{p}=\phi_{p-1}(\boldsymbol{x}) /\|\boldsymbol{x}\|_{p}^{p-1}
$$

when p is even, $\phi_{p-1}(\boldsymbol{x})=\boldsymbol{x}^{p-1}$

- The eigenvalue equations can then be we written for general p as

$$
\frac{d \mathcal{L}}{d \boldsymbol{x}}(\boldsymbol{x}, \lambda)=\mathbf{0} \quad \Rightarrow \quad \boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{x})=\lambda \phi_{d}\left(\boldsymbol{x}^{d-1}\right)
$$

- The largest tensor singular value is the operator/spectral norm of the tensor
- Recall we defined the operator norm of the tensor as

$$
\|\mathcal{T}\|=\max _{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d} \in \mathbb{S}^{n-1}}\left|f^{\mathcal{T}}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d}\right)\right|
$$

where \mathbb{S}^{n-1} is the unit sphere (norm-1 vectors)

- This value corresponds to the largest l^{2} tensor singular value, or in the symmetric case, the largest magnitude of any of the tensor Z-eigenvalues

Eigenvalues of Nonsymmetric Tensors

- For nonsymmetric matrices case, the Lagrangian approach used above cannot be used to describe the eigenvalues
- The eigenvalues of a real nonsymmetric matrix may be complex
- For tensors, we can still define the eigenvalue equations in a consistent way with respect to matrices,

$$
\boldsymbol{f}_{i}^{(\boldsymbol{\mathcal { T }})}(\boldsymbol{x}, \ldots, \boldsymbol{x})=\lambda \phi_{p}(\boldsymbol{x})
$$

so that λ, \boldsymbol{x} are the mode- i an l^{p}-eigenpair

- For matrices, the mode-1 and mode-2 l^{2}-eigenvectors are the left/right eigenvectors

Connection Between Decomposition and Eigenvalues

- In the matrix-case, the largest magnitude eigenvalue and singular value may be associated with a rank-1 term that gives the best rank-1 decomposition of a matrix
- For symmetric matrices, it suffices to consider the dominant eigenpair
- For nonsymmetric matrices, a rank-1 truncated SVD gives the largest singular vector/value pair and associated rank-1 approximation
- In the tensor case, the rank-1 approximation problem corresponds to a maximization problem ${ }^{4}$
- Given a nonsymmetric tensor \mathcal{T} the rank-1 tensor decomposition objective is

$$
\min _{\boldsymbol{u}^{(1)}, \ldots, \boldsymbol{u}^{(d)} \in \mathbb{S}^{n-1}}\left\|\boldsymbol{T}-\sigma \boldsymbol{u}^{(1)} \otimes \cdots \otimes \boldsymbol{u}^{(d)}\right\|_{F}^{2}
$$

- The problem is equivalent to the maximum l^{2}-singular value problem for \mathcal{T}

$$
\max _{\boldsymbol{u}^{(1)}, \ldots, \boldsymbol{u}^{(d)} \in \mathbb{S}^{n-1}} \sigma \quad \text { s.t. } \quad \forall_{i} \boldsymbol{f}_{i}^{(\boldsymbol{\mathcal { T }})}\left(\boldsymbol{u}^{(1)}, \ldots, \hat{\boldsymbol{u}}^{(i)}, \ldots, \boldsymbol{u}^{(d)}\right)=\sigma \boldsymbol{u}^{(i)}
$$

[^2]
Derivation of Equivalence

- The singular value problem can be derived from decomposition via the method of Lagrange multipliers
- In general, consider the Lagrangian function

$$
\mathcal{L}\left(\boldsymbol{u}^{(1)}, \ldots, \boldsymbol{u}^{(d)}, \sigma, \boldsymbol{\lambda}\right)=\left\|\boldsymbol{\mathcal { T }}-\sigma \boldsymbol{u}^{(1)} \otimes \cdots \otimes \boldsymbol{u}^{(d)}\right\|_{F}^{2}+\sum_{i} \lambda_{i}\left(\sum_{j}\left(\left\|\boldsymbol{u}_{j}^{(i)}\right\|_{2}^{2}-1\right)\right)
$$

- For order 3, we have

$$
\mathcal{L}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \sigma, \boldsymbol{\lambda})=\|\boldsymbol{T}-\sigma \boldsymbol{u} \otimes \boldsymbol{v} \otimes \boldsymbol{w}\|_{F}^{2}+\lambda_{1}\left(\boldsymbol{u}^{T} \boldsymbol{u}-1\right)+\lambda_{2}\left(\boldsymbol{v}^{T} \boldsymbol{v}-1\right)+\lambda_{3}\left(\boldsymbol{w}^{T} \boldsymbol{w}-1\right)
$$

- The optimality conditions give

$$
\begin{aligned}
& \frac{d \mathcal{L}}{d \boldsymbol{\lambda}}=\mathbf{0} \quad \Rightarrow \quad \boldsymbol{u}^{T} \boldsymbol{u}=1, \quad \boldsymbol{v}^{T} \boldsymbol{v}=1, \quad \boldsymbol{w}^{T} \boldsymbol{w}=1 \\
& \frac{d \mathcal{L}}{d \sigma}=\mathbf{0} \quad \Rightarrow \quad f^{(\mathcal{T})}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})=\sigma \\
& \frac{d \mathcal{L}}{d \boldsymbol{u}}=\mathbf{0} \quad \Rightarrow \quad \sigma \boldsymbol{f}_{1}^{(\mathcal{T})}(\boldsymbol{v}, \boldsymbol{w})=\left(\sigma^{2}+\lambda_{1}\right) \boldsymbol{u}
\end{aligned}
$$

and similar for $\frac{d \mathcal{L}}{d v}, \frac{d \mathcal{L}}{d \boldsymbol{w}}$. Premultiplying the last condition by \boldsymbol{u}^{T}, gives the second modulo λ_{1}, so $\lambda_{1}=0$, giving the singular value equation $\boldsymbol{f}_{1}^{(\mathcal{T})}(\boldsymbol{v}, \boldsymbol{w})=\sigma \boldsymbol{u}$.

Hardness of Eigenvalue Computation

- Like rank-1 approximation, computing eigenvalues of singular values of a tensor is NP-hard, which can be demonstrated by considering the tensor bilinear feasibility problem ${ }^{5}$
- Restricting the tensor to be symmetric still leads to NP-hard problems, the largest singular vector will be the largest eigenvector a result of Banach ${ }^{6}$

$$
\max _{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{S}^{n-1}} f^{(\mathcal{T})}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\max _{\boldsymbol{x} \in \mathbb{S}^{n-1}} f^{(\mathcal{T})}(\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x})
$$

- The tensor bilinear feasibility problem associated with an order 3 tensor \mathcal{T} is defined by the set of equations

$$
\boldsymbol{f}_{1}^{(\mathcal{T})}(\boldsymbol{v}, \boldsymbol{w})=\mathbf{0}, \quad \boldsymbol{f}_{2}^{(\mathcal{T})}(\boldsymbol{u}, \boldsymbol{w})=\mathbf{0}, \quad \boldsymbol{f}_{3}^{(\mathcal{T})}(\boldsymbol{u}, \boldsymbol{v})=\mathbf{0}
$$

where we seek solutions $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \neq \mathbf{0}$

- This problem is a special case of the l^{p} singular value problem for any choice of p with $\sigma=0$

[^3]
Hardness of Eigenvalue Computation

- NP-hardness of the tensor bilinear feasibility problem can be demonstrated by reduction from 3-colorability
- The 3-coloring problem seeks to find (if possible) an assignment of one of 3 colors to each vertex of a graph that is different from the color of any of its neighbors
- We define an optimization problem over a set of variables $\boldsymbol{x} \in \mathbb{C}^{n}$ that describe the color (each will take on a power of the third root of unity), as well as auxiliary variables $\boldsymbol{y} \in \mathbb{C}^{n}, z \min \mathbb{C}$, then define the bilinear equations

$$
\begin{aligned}
& \forall i \in\{1, \ldots, n\}, \quad x_{i} y_{i}-z^{2}=0, \quad y_{i} z-x^{2}=0, \quad x_{i} z-y_{i}^{2}=0 \\
& \forall i \in\{1, \ldots, n\}, \quad \sum_{(i, j) \in E} \underbrace{x_{i}^{2}+x_{i} x_{j}+x_{j}^{2}}_{\frac{x_{i}^{3}-x_{j}^{3}}{x_{i}-x_{j}}}
\end{aligned}
$$

- Assume (normalize) so that $z=1$, then the first set of equations implies $y_{i}=1 / x_{i}$ and further $x_{i}^{3}=1$, so labels are cubic roots of unity
- For the second set of equations, we then must have $x_{i} \neq x_{j}$ if $(i, j) \in E$

Power Method for Singular Value Computation

- The high-order power method (HOPM) can be used to compute the largest singular value ${ }^{7}$
- The algorithm updates factors in an alternating manner until convergence, with the ith factor matrix updated as

1. $\boldsymbol{v}^{(i)}=\boldsymbol{f}_{i}^{(\boldsymbol{T})}\left(\boldsymbol{u}^{(1)}, \ldots, \hat{\boldsymbol{u}}^{(i)}, \ldots, \boldsymbol{u}^{(d)}\right)$,
2. $\sigma=\left\|\boldsymbol{v}^{(i)}\right\|_{2}$
3. $\boldsymbol{u}_{\text {new }}^{(i)}=\boldsymbol{v}^{(i)} / \sigma$

- The algorithm can be derived from the Lagrangian and converges to a local minimum
- Effective initialization can be achieved by HOSVD and the algorithm is equivalent to the rank-1 version of the HOOI procedure

[^4]
Power Method for Symmetric Eigenvalue Problems

- The HOPM algorithm can be adapted to symmetric tensors
- The aforementioned Banach's polynomial maximization theorem implies HOPM will converge to symmetric solution even if intermediate results are nonsymmetric
- If symmetry is enforced on the iterates, so that

$$
\boldsymbol{v}=\boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{u})=\boldsymbol{f}_{i}^{(\mathcal{T})}(\boldsymbol{u}, \ldots, \boldsymbol{u}), \quad \boldsymbol{u}^{(\text {new })}=\boldsymbol{v} /\|\boldsymbol{v}\|,
$$

the algorithm is no longer guaranteed to converge (it does if the tensor order is even and the underlying function is convex)

- The shifted symmetric HOPM method ${ }^{8}$ alleviates this problem and enables convergence to other eigenvalues by adding a shift so as to minimize $\boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{u})+\alpha\left(\boldsymbol{u}^{T} \boldsymbol{u}\right)^{d / 2}$ for order d tensor \mathcal{T}, yielding to updates such as

$$
\boldsymbol{v}=\boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{u})+\alpha \boldsymbol{u}, \quad \boldsymbol{u}^{(\text {new })}=\boldsymbol{v} /\|\boldsymbol{v}\|
$$

[^5]
Perron-Frobenius Theorem for Tensor Eigenvalues

- The Perron-Frobenius theorem states that positive matrices have a unique real eigenvalue and the associated eigenvector is positive
- Can be extended to nonnegative matrices so long as matrix in not reducible, i.e., cannot be put into the form

$$
\boldsymbol{P A} \boldsymbol{P}^{-1}=\left[\begin{array}{cc}
\boldsymbol{E} & \boldsymbol{F} \\
\mathbf{0} & \boldsymbol{G}
\end{array}\right]
$$

where P is a permutation matrix and G has at least 1 row

- This theorem is prominent in the study of nonsymmetric matrices
- Its applications include analysis of stochastic processes and algebraic graph theory
- Tensor eigenvalues satisfy a generalized Perron-Frobenius theorem
- If tensor is positive, the eigenvector with the largest eigenvalue is positive
- A nonnegative order d tensor is irreducible if there is no d-dimensional blocking into 2^{d} blocks that yields an off-diagonal zero block
- For further properties, see LH Lim, "Singular Values and Eigenvalues of Tensors: A Variational Approach", 2005 and Q Yang, Y Yang, "Further results for Perron-Frobenius theorem for nonnegative tensors II", 2011

Tensor Eigenvalues and Hypergraphs

- Matrix eigenvalues are prominent in algebraic graph theory
- For an unweighted graph we typically consider a binary adjacency matrix A or the Laplacian matrix $\boldsymbol{D}-\boldsymbol{A}$ where \boldsymbol{D} is a diagonal degree matrix
- The eigenvector with the second smallest eigenvalue can be used to find a partitioning of verticies with a provably small cut value
- Clustering can be done via constrained low-rank approximations methods
- Tensor eigenvalues can be used to understand partitioning/clustering properties of uniform hypergraphs ${ }^{9}$
- A uniform hypergraph $H=(V, E)$ is described by a set of vertices V and a set of hyperedges E, each of which is a subset of r vertices in E
- Each hyperedge $\left(v_{i}, v_{j}, v_{k}\right) \in E$ may be associated with a tensor entry $t_{i j k}$
- Laplacian-like choice of $t_{i j k}$ yields symmetric and semidefinite tensor
- The tensor must have a zero eigenvalue and the multiplicity of the zero eigenvalue is the number of components in the hypergraph
- The second smallest eigenvalue lower bounds the minimum cut of H

[^6]
[^0]: ${ }^{1}$ Liqun Qi, "Eigenvalues of a Real Supersymmetric Tensor", 2005
 ${ }^{2}$ Lek-Heng Lim, "Singular Values and Eigenvalues of Tensors: A Variational Approach", 2005

[^1]: ${ }^{3}$ Lek-Heng Lim, "Singular Values and Eigenvalues of Tensors: A Variational Approach", 2005

[^2]: ${ }^{4}$ L. De Lathauwer, B. De Moor, and J. Vandewalle, "On the best rank-1 and rank-($R_{1}, R_{2}, \ldots, R_{n}$) approximation of higher-order tensors", 2000

[^3]: ${ }^{5}$ C.J. Hillar and L.-H. Lim, "Most tensor problems are NP-hard", 2013
 ${ }^{6} \mathrm{~S}$. Banach, "On homogeneous polynomials in $L^{2} ", 1938$

[^4]: ${ }^{7}$ L. De Lathauwer, B. De Moor, and J. Vandewalle, "On the best rank-1 and rank-($R_{1}, R_{2}, \ldots, R_{n}$) approximation of higher-order tensors", 2000

[^5]: ${ }^{8}$ T.G. Kolda and J.R. Mayo, "Shifted Power Method for Computing Tensor Eigenpairs", 2011

[^6]: ${ }^{9}$ J. Chang, Y. Chen, L. Qi, H. Yan, "Hypergraph Clustering Using a New Laplacian Tensor with Applications in Image Processing", 2019

