# CS 598 EVS: Tensor Computations Course Overview

#### Edgar Solomonik

University of Illinois at Urbana-Champaign

#### Tensors

A *tensor* is a collection of elements

- its dimensions define the size of the collection
- its order is the number of different dimensions
- specifying an index along each tensor mode defines an element of the tensor
- A few examples of tensors are
  - Order 0 tensors are scalars, e.g.,  $s \in \mathbb{R}$
  - Order 1 tensors are vectors, e.g.,  $\boldsymbol{v} \in \mathbb{R}^n$
  - Order 2 tensors are matrices, e.g.,  $\boldsymbol{A} \in \mathbb{R}^{m \times n}$
  - An order 3 tensor with dimensions  $s_1 \times s_2 \times s_3$  is denoted as  $\mathcal{T} \in \mathbb{R}^{s_1 \times s_2 \times s_3}$ with elements  $t_{ijk}$  for  $i \in \{1, \ldots, s_1\}, j \in \{1, \ldots, s_2\}, k \in \{1, \ldots, s_3\}$



# **Reshaping Tensors**

Its often helpful to use alternative views of the same collection of elements

- Folding a tensor yields a higher-order tensor with the same elements
- Unfolding a tensor yields a lower-order tensor with the same elements
- ▶ In linear algebra, we have the unfolding v = vec(A), which stacks the columns of  $A \in \mathbb{R}^{m \times n}$  to produce  $v \in \mathbb{R}^{mn}$
- ▶ For a tensor  $\mathcal{T} \in \mathbb{R}^{s_1 \times s_2 \times s_3}$ ,  $v = \mathsf{vec}(\mathcal{T})$  gives  $v \in \mathbb{R}^{s_1 s_2 s_3}$  with

$$v_{i+(j-1)s_1+(k-1)s_1s_2} = t_{ijk}$$

 A common set of unfoldings is given by matricizations of a tensor, e.g., for order 3,

$$oldsymbol{T}_{(1)} \in \mathbb{R}^{s_1 imes s_2 s_3}, oldsymbol{T}_{(2)} \in \mathbb{R}^{s_2 imes s_1 s_3}, ext{ and } oldsymbol{T}_{(3)} \in \mathbb{R}^{s_3 imes s_1 s_2}$$

# **Tensor Contractions**

A tensor contraction multiplies two tensors to produce a third

- Examples: inner product, outer product, tensor product, Hadamard (elementwise) product, matrix multiplication
- One higher order example is tensor-times-matrix (TTM), e.g.,

$$t_{ijkl} = \sum_{q} u_{ijql} v_{qk}$$

A common contraction between two high order tensors is

$$t_{abij} = \sum_{p,q} u_{apiq} v_{pbqj}$$

Tensor contractions can be reduced to products of matrices and/or vectors by transposing modes and matricizing both operands, then folding and transposing the product

## **Tensor Contraction Expressions**

In most applications, we wish to evaluate mathematical expressions involving contraction of more than two tensors

- Contractions of more than two tensors are also sometimes referred to as *einsums* (short for Einstein summation, in reference to Einstein's convention for omitting summation indices)
- One important example is the 'MTTKRP' kernel

$$u_{ir} = \sum_{j,k} t_{ijk} v_{jr} w_{kr}$$

- Efficient evaluation of such kernels requires specialized algorithms
- Contraction algorithms must also be adapted to leverage tensor properties such as symmetry with respect to permutation of modes, block-wise group symmetries, and data sparsity

### **Tensor Decompositions**

Tensor decompositions express a tensor as a contraction of *factors* 

Canonical polyadic (CP) decomposition, factors are three matrices:

$$t_{ijk} = \sum_{r=1}^{R} u_{ir} v_{jr} w_{kr}$$

Tucker decomposition, factors are three orthogonal matrices and a core tensor:

$$t_{ijk} = \sum_{p,q,r} u_{ip} v_{jq} w_{kr} z_{pqr}$$

Tensor train decomposition, factors are matrices or order 3 tensors:

$$t_{i_1 i_2 i_3 i_4} = \sum_{j_1, j_2, j_3} u_{i_1 j_1} v_{j_1 i_2 j_2} w_{j_2 i_3 j_3} z_{j_3 i_4}$$



# **Applications of Tensor Decompositions**

- Tensor decompositions provide a mechanism for approximating tensor datasets with a smaller number of degrees of freedom
  - polynomial improvements are obtained in electronic structure calculations
  - exponential improvements are obtained for representing some quantum states
- With imposition of constraints (e.g., nonnegativity or orthogonality), they can be used for data mining tasks such as high-order clustering
  - in the presence of missing data, tensor decompositions may be used to perform tensor completion
- When the tensor represents an operator or mapping, tensor decompositions can be used to find reduced structure
  - fast algorithms, such as FFT and Strassen's matrix multiplication algorithm, may be viewed as tensor decompositions

## **Tensor Decomposition Theory**

- Many basic decomposition/approximation problems are formally NP-hard
- A considerable amount of theory focuses on CP decomposition and CP rank, some will be surveyed in this course
- A few alternate notions of tensor eigenvalues and singular values exist, and may be loosely tied to decompositions
- Stability and conditioning results exist for the tensor as an operator and CP decomposition as a problem

# **Tensor Decomposition Algorithms**

- Approximation with tensor decomposition is generally formulated as a nonlinear least squares (NLS) problem
- Optimization methods usually involve successive quadratic approximation (Newton-based methods) as opposed to gradient-based methods
- Alternating least squares (ALS) decouples nonlinear problem into subproblems on subsets of variables that are quadratic and solves each in an alternating manner
- Other optimization methods, such as interior point and ADMM, are often employed in the presence of constraints
- In all cases, methods are specialized to work efficiently for tensor decompositions and may be adapted for sparsity

## **Tensor Networks**

- Tensor network methods take as input a tensor that is already decomposed
- Goal is generally to learn something about an operator described by a tensor network
- Often want to compute extremal eigenpairs of matrix *M* a tensor folding of which *T* is described by the tensor network, e.g.,

 $M = A \otimes B + C \otimes D$ 

- Unknowns, e.g., eigenvectors in eigenproblem above, often also represented implicitly by a tensor decomposition
- These methods are prevalent for studying quantum systems, which involve a Hamiltonian acting on a space that is exponential in size relative to the system
- ► In this context, tensor networks are also effective for time-evolution

# **Tensor Network Theory and Algorithms**

- Different classes of functions have low rank with respect to different tensor networks
- ID and 2D tensor networks are most widely used for quantum systems
- Successive (alternating) quadratic optimization also widely used for tensor networks
- Canonical forms propagate orthogonality conditions to ensure stability
- Naive contraction of 2D tensor networks has exponential cost, various approximate algorithms exist
- Other tensor networks trade-off connectivity and contractibility