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Tensors

A tensor is a collection of elements
I its dimensions define the size of the collection
I its order is the number of di�erent dimensions
I specifying an index along each tensor mode defines

an element of the tensor

A few examples of tensors are
I Order 0 tensors are scalars, e.g., s ∈ R
I Order 1 tensors are vectors, e.g., v ∈ Rn

I Order 2 tensors are matrices, e.g., A ∈ Rm×n

I An order 3 tensor with dimensions s1 × s2 × s3 is denoted as T ∈ Rs1×s2×s3

with elements tijk for i ∈ {1, . . . , s1}, j ∈ {1, . . . , s2}, k ∈ {1, . . . , s3}



Reshaping Tensors

Its often helpful to use alternative views of the same collection of elements
I Folding a tensor yields a higher-order tensor with the same elements
I Unfolding a tensor yields a lower-order tensor with the same elements
I In linear algebra, we have the unfolding v = vec(A), which stacks the

columns of A ∈ Rm×n to produce v ∈ Rmn

I For a tensor T ∈ Rs1×s2×s3 , v = vec(T ) gives v ∈ Rs1s2s3 with

vi+(j−1)s1+(k−1)s1s2 = tijk

I A common set of unfoldings is given by matricizations of a tensor, e.g., for
order 3,

T(1) ∈ Rs1×s2s3 ,T(2) ∈ Rs2×s1s3 , and T(3) ∈ Rs3×s1s2



Tensor Contractions
A tensor contraction multiplies two tensors to produce a third

I Examples: inner product, outer product, tensor product, Hadamard
(elementwise) product, matrix multiplication

I One higher order example is tensor-times-matrix (TTM), e.g.,

tijkl =
∑
q

uijqlvqk

I A common contraction between two high order tensors is

tabij =
∑
p,q

uapiqvpbqj

I Tensor contractions can be reduced to products of matrices and/or vectors
by transposing modes and matricizing both operands, then folding and
transposing the product



Tensor Contraction Expressions

In most applications, we wish to evaluate mathematical expressions involving
contraction of more than two tensors

I Contractions of more than two tensors are also sometimes referred to as
einsums (short for Einstein summation, in reference to Einstein’s convention
for omitting summation indices)

I One important example is the ‘MTTKRP’ kernel

uir =
∑
j,k

tijkvjrwkr

I E�cient evaluation of such kernels requires specialized algorithms
I Contraction algorithms must also be adapted to leverage tensor properties

such as symmetry with respect to permutation of modes, block-wise group
symmetries, and data sparsity



Tensor Decompositions
Tensor decompositions express a tensor as a contraction of factors

I Canonical polyadic (CP) decomposition, factors are three matrices:

tijk =

R∑
r=1

uirvjrwkr

I Tucker decomposition, factors are three orthogonal matrices and a core tensor:

tijk =
∑
p,q,r

uipvjqwkrzpqr

I Tensor train decomposition, factors are matrices or order 3 tensors:

ti1i2i3i4 =
∑

j1,j2,j3

ui1j1vj1i2j2wj2i3j3zj3i4



Applications of Tensor Decompositions

I Tensor decompositions provide a mechanism for approximating tensor
datasets with a smaller number of degrees of freedom

I polynomial improvements are obtained in electronic structure calculations
I exponential improvements are obtained for representing some quantum states

I With imposition of constraints (e.g., nonnegativity or orthogonality), they
can be used for data mining tasks such as high-order clustering

I in the presence of missing data, tensor decompositions may be used to
perform tensor completion

I When the tensor represents an operator or mapping, tensor decompositions
can be used to find reduced structure

I fast algorithms, such as FFT and Strassen’s matrix multiplication algorithm,
may be viewed as tensor decompositions



Tensor Decomposition Theory

I Many basic decomposition/approximation problems are formally NP-hard
I A considerable amount of theory focuses on CP decomposition and CP rank,

some will be surveyed in this course
I A few alternate notions of tensor eigenvalues and singular values exist, and

may be loosely tied to decompositions
I Stability and conditioning results exist for the tensor as an operator and CP

decomposition as a problem



Tensor Decomposition Algorithms

I Approximation with tensor decomposition is generally formulated as a
nonlinear least squares (NLS) problem

I Optimization methods usually involve successive quadratic approximation
(Newton-based methods) as opposed to gradient-based methods

I Alternating least squares (ALS) decouples nonlinear problem into
subproblems on subsets of variables that are quadratic and solves each in
an alternating manner

I Other optimization methods, such as interior point and ADMM, are often
employed in the presence of constraints

I In all cases, methods are specialized to work e�ciently for tensor
decompositions and may be adapted for sparsity



Tensor Networks

I Tensor network methods take as input a tensor that is already decomposed
I Goal is generally to learn something about an operator described by a

tensor network
I Often want to compute extremal eigenpairs of matrix M a tensor folding of

which T is described by the tensor network, e.g.,

M = A⊗B +C ⊗D

I Unknowns, e.g., eigenvectors in eigenproblem above, often also represented
implicitly by a tensor decomposition

I These methods are prevalent for studying quantum systems, which involve a
Hamiltonian acting on a space that is exponential in size relative to the
system

I In this context, tensor networks are also e�ective for time-evolution



Tensor Network Theory and Algorithms

I Di�erent classes of functions have low rank with respect to di�erent tensor
networks

I 1D and 2D tensor networks are most widely used for quantum systems
I Successive (alternating) quadratic optimization also widely used for tensor

networks
I Canonical forms propagate orthogonality conditions to ensure stability
I Naive contraction of 2D tensor networks has exponential cost, various

approximate algorithms exist
I Other tensor networks trade-o� connectivity and contractibility
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