
CS 598 EVS: Tensor Computations
Matrix Computations Background

Edgar Solomonik

University of Illinois, Urbana-Champaign



Matrices and Tensors
§ What is a matrix?

§ What is a tensor?



Matrix Norms
§ Properties of matrix norms:

}A} ě 0

}A} “ 0 ô A “ 0

}αA} “ |α| ¨ }A}

}A ` B} ď }A} ` }B} (triangle inequality)

§ Frobenius norm:

§ Operator/induced/subordinate matrix norms:

Demo: Matrix norms

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/02-linear-systems/Matrix norms.html


Existence of SVD
§ Consider any maximizer x1 P Rn with }x1}2 “ 1 to }Ax1}2



Singular Value Decomposition
§ The singular value decomposition (SVD)

§ Condition number in terms of singular values



Visualization of Matrix Conditioning



Matrix Condition Number
§ The matrix condition number κpAq is the ratio between the max and min

distance from the surface to the center of the unit ball (norm-1 vectors)
transformed by A:

§ The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product:



Linear Systems

§ Given a square matrix A P Rnˆn with rank n, consider solving Ax “ b given b

§ The SVD allows explicit inversion of A

§ However, Gaussian elimination is more computationally efficient

§ Given a factorization of A, solving a system with A ` uvT has cost Opn2q via
the Sherman-Morrison-Woodbury formula



Linear Least Squares
§ Find x‹ “ argminxPRn }Ax ´ b}2 where A P Rmˆn:

§ Given the SVD A “ UΣV T we have x‹ “ V Σ:UT
looomooon

A:

b, where Σ: contains the

reciprocal of all nonzeros in Σ, and more generally : denotes pseudoinverse:



Normal Equations
§ Normal equations are given by solving ATAx “ ATb:

§ However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm

Demo: Normal equations vs Pseudoinverse
Demo: Issues with the normal equations

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html


Solving the Normal Equations
§ If A is full-rank, then ATA is symmetric positive definite (SPD):

§ Since ATA is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:



QR Factorization
§ If A is full-rank there exists an orthogonal matrix Q and a unique

upper-triangular matrix R with a positive diagonal such that A “ QR

§ A reduced QR factorization (unique part of general QR) is defined so that
Q P Rmˆn has orthonormal columns and R is square and upper-triangular

§ We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows



Computing the QR Factorization
§ The Cholesky-QR algorithm uses the normal equations to obtain the QR

factorization

§ Orthogonalization-based methods are most efficient and stable for QR
factorization of dense matrices



Householder orthogonalization



Eigenvalue Decomposition
§ If a matrix A is diagonalizable, it has an eigenvalue decomposition

§ A and B are similar, if there exist Z such that A “ ZBZ´1



Similarity of Matrices
Invertible similarity transformations Y “ XAX´1

matrix (A) reduced form (Y )
arbitrary
diagonalizable

Unitary similarity transformations Y “ UAUH

matrix (A) reduced form (Y )
arbitrary
normal
Hermitian

Orthogonal similarity transformations Y “ QAQT

matrix (A) reduced form (Y )
real
real symmetric
real SPD



Field of Values

§ For any square matrix A and vector x the Rayleigh quotient is

§ Its magnitude is bounded by the singular values as

§ If x is an eigenvector of A, so Ax “ λx or xHA “ λxH , then

§ The set FA “ tρApxq : x P Cn,x ‰ 0u is the field of values of A



Field of Values and Eigenvalues
§ Clearly any eigenvalue λ of A is in FA

§ For the matrix A “

»

—

—

–

3
´3

3
1 1

fi

ffi

ffi

fl

, FA is1

§ The field of values of a normal matrix is easy to characterize

§ In general, eigenvectors are obtained from critical points of the Rayleigh
quotient on the unit circle

1Credit to https://www.chebfun.org/examples/linalg/FieldOfValues.html

https://www.chebfun.org/examples/linalg/FieldOfValues.html


Singular Vectors as Critical Points
§ Like eigenvectors, we can also derive singular vectors from an optimization

(critical point) perspective



Matrix Functions

§ Consider a polynomial p, for a diagonalizable matrix A “ XDX´1,

ppAq “ XppDqX´1

§ The above definition readily extends to other analytic functions f , but
non-diagonalizable matrices require a more sophisticated definition



Crouzeix’s conjecture
§ So far, we have seen close connections between the matrix 2-norm and

singular values, and between the Rayleigh quotient and the eigenvalues
§ An important open problem in numerical analysis that relates the norm with

the Rayleigh quotient is Crouzeix’s conjecture



Computing Eigenvalue and Singular Value Decompositions
§ Direct methods for eigenvalue problems start by reducing the matrix to

upper-Hessenberg form

§ Iterative methods are generally based on products with the matrix



Introduction to Krylov Subspace Methods
§ Krylov subspace methods work with information contained in the nˆ k matrix

Kk “
“

x0 Ax0 ¨ ¨ ¨ Ak´1x0

‰

§ Assuming Kn is invertible, the matrix K´1
n AKn is a companion matrix C:



Krylov Subspaces
§ Given QkRk “ Kk, we obtain an orthonormal basis for the Krylov subspace,

KkpA,x0q “ spanpQkq “ tppAqx0 : degppq ă ku,

where p is any polynomial of degree less than k.
§ The Krylov subspace includes the k ´ 1 approximate dominant eigenvectors

generated by k ´ 1 steps of power iteration:



Rayleigh-Ritz Procedure

§ The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

§ The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only Hk and Qk:



Arnoldi Iteration
§ Arnoldi iteration computes the ith column of Hn, hi and the ith column of
Qn directly using the recurrence Aqi “ Qnhi “

ři`1
j“1 hjiqj



Multidimensional Optimization
§ Minimize fpxq

§ Quadratic optimization fpxq “ 1
2x

TAx ´ bTx



Basic Multidimensional Optimization Methods
§ Steepest descent: minimize f in the direction of the negative gradient:

§ Given quadratic optimization problem fpxq “ 1
2x

TAx ` bTx where A is
symmetric positive definite, the error ek “ xk ´ x˚ satisfies

||ek`1||A “

§ When sufficiently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.

§ Convergence rate depends on the conditioning of A, since



Gradient Methods with Extrapolation
§ We can improve the constant in the linear rate of convergence of steepest

descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction xk ´ xk´1):

§ The heavy ball method, which uses constant αk “ α and βk “ β, achieves
better convergence than steepest descent:



Conjugate Gradient Method
§ The conjugate gradient method is capable of making the optimal (for a

quadratic objective) choice of αk and βk at each iteration of an extrapolation
method:

§ Parallel tangents implementation of the method proceeds as follows



Krylov Optimization
§ Conjugate gradient (CG) finds the minimizer of fpxq “ 1

2x
TAx ´ bTx (which

satisfies optimality condition Ax “ b) within the Krylov subspace of A:



Conjugate Gradient Method: Optimized Form
After initialization x0 “ 0, r0 “ b, p0 “ r0, the kth iteration of CG computes

qk “ Apk

αk “
rTk rk

qTk pk

xk`1 “ xk ` αkpk

rk`1 “ rk ´ αkqk

At this point if the residual norm (}rk`1}) is small, terminate, otherwise prepare
for next iteration,

pk`1 “ rk`1 `
rTk`1rk`1

rTk rk
pk

See Jonathan Shewchuk 1994 notes on CG or James Demmel’s book for the
derivation of this form of the algorithm.



Conjugate Gradient Convergence Analysis
§ In previous discussion, we assumed Kn is invertible, which may not be the

case if A has k ă n distinct eigenvalues, however, then CG converges in
k ´ 1 iterations (in exact arithmetic)



Round-off Error in Conjugate Gradient

§ CG provides strong convergence guarantees for SPD matrices in exact
arithmetic

§ Classically, CG was viewed as a direct method, since its guaranteed to
convergence in n iterations

§ In practice, round-off error prevents CG from achieving this for realistic
matrices, so CG was actually abandoned for a while due to being viewed as
unstable

§ Later, it was realized that CG is highly competitive as an iterative method
§ Due to round-off CG may stagnate / have plateaus in convergence

§ A formal analysis of round-off error2 reveals that CG with round-off is
equivalent to exact CG on a matrix of larger dimension, whose eigenvalues are
clustered around those of A

§ Using this view, CG convergence plateaus may be explained by the polynomial
qk developing more and more zeros near the same eigenvalue of A

2A. Greenbaum and Z. Strakos, SIMAX 1992



Preconditioning
§ Convergence of iterative methods for Ax “ b depends on κpAq, the goal of a

preconditioner M is to obtain x by solving

M´1Ax “ M´1b

with κpM´1Aq ă κpAq
§ need not form M´1A but only compute matrix-vector products M´1pAxq

§ want M´1x to be easy to compute (easier than A´1x)
§ so generally one extracts some M « A that is easy to solve linear systems with
§ however, M « A may be insufficient/unnecessary, primary goal is to improve

conditioning to accelerate iterative methods, i.e., want κpM´1Aq ! κpAq

§ Common preconditioners select parts of A or perform inexact factorization
§ (block-)Jacobi preconditioner takes M to be (block-)diagonal of A
§ incomplete LU (ILU) preconditioners compute M “ LU « A (+pivoting)
§ ILU variants constraint sparsity of L and U factors during factorization to be

the same or not much more than that of A
§ good problem-specific preconditioners are often available in practice and

theory, applying also to problems beyond linear systems (eigenvalue problems,
optimization, approximate graph algorithms)



Newton’s Method
§ Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f :



Nonlinear Least Squares
§ An important special case of multidimensional optimization is nonlinear least

squares, the problem of fitting a nonlinear function fxptq so that fxptiq « yi:

§ We can cast nonlinear least squares as an optimization problem to minimize
residual error and solve it by Newton’s method:



Gauss-Newton Method
§ The Hessian for nonlinear least squares problems has the form:

§ The Gauss-Newton method is Newton iteration with an approximate Hessian:



Low Rank Matrix Approximation
§ Given a matrix A P Rmˆn seek rank r ă m,n approximation

§ Eckart-Young (optimal low-rank approximation by SVD) theorem



Rank Revealing Matrix Factorizations
§ Computing the SVD

§ QR with column pivoting



Simultaneous and Orthogonal Iteration
§ Orthogonal iteration computing many eigenvectors at once in an iterative

way



Orthogonal Iteration Convergence
§ If A has distinct eigenvalues and Ri has positive decreasing diagonal, the
jth column of Qi converges to the jth Schur vector of A linearly with rate
maxp|λj`1{λj |, |λj{λj´1|q.



Randomized SVD
§ Orthogonal iteration for SVD can also be viewed as a randomized algorithm



Generalized Nyström Algorithm
§ The generalized Nyström algorithm provides an efficient way of computing a

low-rank factorization given an approximation of its span3

3Nakatsukasa, Yuji, Fast and stable randomized low-rank matrix approximation, 2020.



Analysis of Generalized Nyström Algorithm
§ Consider F1 “ AST

1 and F2 “ AST
2 , derive the minimizer Z to

}A ´ F1ZF T
2 }F

§ The generalized Nyström algorithm may be interpreted as applying a
two-sided oblique projection of A
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