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Matrices and Tensors
» What is a matrix?

» What is a tensor?



Matrix Norms
» Properties of matrix norms:

|A] =0
|Aj=0 = A=0
oAl = |of - [A]

|A+ B| < |A| + |B| (triangle inequality)

» Frobenius norm:

» Operator/induced/subordinate matrix norms:

Demo: Matrix norms


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/02-linear-systems/Matrix norms.html

Existence of SVD

» Consider any maximizer x; € R" with |z, = 1 to ||[Az|,



Singular Value Decomposition
» The singular value decomposition (SVD)

» Condition number in terms of singular values



Visualization of Matrix Conditioning
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Matrix Condition Number

» The matrix condition number x(A) is the ratio between the max and min
distance from the surface to the center of the unit ball (norm-1 vectors)
transformed by A:

» The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product:



Linear Systems

» Given a square matrix A € R™*" with rank n, consider solving Az = b given b
» The SVD allows explicit inversion of A

» However, Gaussian elimination is more computationally efficient

» Given a factorization of A, solving a system with A + uv” has cost O(n?) via
the Sherman-Morrison-Woodbury formula



Linear Least Squares
» Find * = argming g [|[Ax — b|, where A € R™*™:

» Giventhe SVD A = UXVT we have z* = VXIUT b, where X' contains the
—

At
reciprocal of all nonzeros in 3, and more generally 1 denotes pseudoinverse:



. Demo: Normal equations vs Pseudoinverse
Normal E quations Demo: Issues with the normal equations

» Normal equations are given by solving AT Az = AT'b:

» However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html

Solving the Normal Equations
» If Ais full-rank, then AT A is symmetric positive definite (SPD):

» Since AT A is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:



QR Factorization

» If A is full-rank there exists an orthogonal matrix Q and a unique
upper-triangular matrix R with a positive diagonal such that A = QR

» A reduced QR factorization (unique part of general QR) is defined so that
Q € R™*™ has orthonormal columns and R is square and upper-triangular

» We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows



Computing the QR Factorization

» The Cholesky-QR algorithm uses the normal equations to obtain the QR
factorization

» Orthogonalization-based methods are most efficient and stable for QR
factorization of dense matrices



Householder orthogonalization
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Eigenvalue Decomposition
» If a matrix A is diagonalizable, it has an eigenvalue decomposition

» A and B are similar, if there exist Z such that A = ZBZ !



Similarity of Matrices

Invertible similarity transformationsY = X AX !

matrix (A)

reduced form (Y')

arbitrary

diagonalizable

Unitary similarity transformations Y =

matrix (A)

UAUH
reduced form (Y')

arbitrary

normal

Hermitian

Orthogonal similarity transformations Y = QAQ”

matrix (A)

reduced form (Y')

real

real symmetric

real SPD




Field of Values

» For any square matrix A and vector x the Rayleigh quotient is

» Its magnitude is bounded by the singular values as

» If 2 is an eigenvector of A, so Az = Az or x7 A = \zf, then

v

The set F4 = {pa(x) : © € C",x # 0} is the field of values of A



Field of Values and Eigenvalues
» Clearly any eigenvalue A of Aisin Fa
3
» For the matrix A = -3 5 L Fais! |
1 1

» The field of values of a normal matrix is easy to characterize

» In general, eigenvectors are obtained from critical points of the Rayleigh
quotient on the unit circle


https://www.chebfun.org/examples/linalg/FieldOfValues.html

Singular Vectors as Critical Points

» Like eigenvectors, we can also derive singular vectors from an optimization
(critical point) perspective



Matrix Functions

» Consider a polynomial p, for a diagonalizable matrix A = XDX !,

p(A) = Xp(D)X

» The above definition readily extends to other analytic functions f, but
non-diagonalizable matrices require a more sophisticated definition



Crouzeix’s conjecture
» So far, we have seen close connections between the matrix 2-norm and
singular values, and between the Rayleigh quotient and the eigenvalues
» An important open problem in numerical analysis that relates the norm with
the Rayleigh quotient is Crouzeix’s conjecture



Computing Eigenvalue and Singular Value Decompositions

» Direct methods for eigenvalue problems start by reducing the matrix to
upper-Hessenberg form

» Iterative methods are generally based on products with the matrix



Introduction to Krylov Subspace Methods
» Krylov subspace methods work with information contained in the n x k matrix

Kk:[wo Axg - Akilwo]

» Assuming K, is invertible, the matrix K, ! AK,, is a companion matrix C:



Krylov Subspaces
» Given Q. R, = K;, we obtain an orthonormal basis for the Krylov subspace,

Kr(A,zo) = span(Qy) = {p(A)z : deg(p) < k},
where p is any polynomial of degree less than k.

» The Krylov subspace includes the £ — 1 approximate dominant eigenvectors
generated by k£ — 1 steps of power iteration:



Rayleigh-Ritz Procedure

» The eigenvalues/eigenvectors of Hy, are the Ritz values/vectors:

» The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only H;, and Qy:



Arnoldi Iteration

» Arnoldi iteration computes the ith column of H,,, h; and the ith column of
Q,, directly using the recurrence Aq; = Q,h; = Z;J;ll hjiq;



Multidimensional Optimization
» Minimize f(x)

> Quadratic optimization f(z) = 27 Az — bTx



Basic Multidimensional Optimization Methods
» Steepest descent: minimize f in the direction of the negative gradient:

» Given quadratic optimization problem f(x) = %:cTA:c + bTx where A is
symmetric positive definite, the error e, = x;, — x™* satisfies

lex+1lla =
» When sufficiently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.
» Convergence rate depends on the conditioning of A, since



Gradient Methods with Extrapolation

» We can improve the constant in the linear rate of convergence of steepest
descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction x;, — x;,_1):

» The heavy ball method, which uses constant o, = o and 5, = 3, achieves
better convergence than steepest descent:



Conjugate Gradient Method

» The conjugate gradient method is capable of making the optimal (for a
quadratic objective) choice of o, and j; at each iteration of an extrapolation
method:

» Parallel tangents implementation of the method proceeds as follows



Krylov Optimization
1

> Conjugate gradient (CG) finds the minimizer of f(x) = 2’ Az — b”x (which
satisfies optimality condition Ax = b) within the Krylov subspace of A:



Conjugate Gradient Method: Optimized Form

After initialization xg = 0, o = b, pg = rg, the kth iteration of CG computes

qr = Apy
T
T, Tk
ap = ]%
q;. Pk

Tp4+1 = Tk + QP
T+l = Tk — QgQqg

At this point if the residual norm (||rx.1|) is small, terminate, otherwise prepare
for next iteration,

TT Tk+1
Pr+1 = Tr41 + k;+%7+
rk Tk
See Jonathan Shewchuk 1994 notes on CG or James Demmel’s book for the
derivation of this form of the algorithm.



Conjugate Gradient Convergence Analysis

» In previous discussion, we assumed K, is invertible, which may not be the
case if A has k& < n distinct eigenvalues, however, then CG converges in
k — 1 iterations (in exact arithmetic)



Round-off Error in Conjugate Gradient

» CG provides strong convergence guarantees for SPD matrices in exact
arithmetic

> Classically, CG was viewed as a direct method, since its guaranteed to
convergence in n iterations

» In practice, round-off error prevents CG from achieving this for realistic
matrices, so CG was actually abandoned for a while due to being viewed as
unstable

> Later, it was realized that CG is highly competitive as an iterative method

» Due to round-off CG may stagnate / have plateaus in convergence

> A formal analysis of round-off error? reveals that CG with round-off is
equivalent to exact CG on a matrix of larger dimension, whose eigenvalues are
clustered around those of A

> Using this view, CG convergence plateaus may be explained by the polynomial
qr. developing more and more zeros near the same eigenvalue of A

2A. Greenbaum and Z. Strakos, SIMAX 1992



Preconditioning

» Convergence of iterative methods for Az = b depends on x(A), the goal of a
preconditioner M is to obtain x by solving

M Az =M"'b

with k(M1 A) < k(A)

» need not form M ~! A but only compute matrix-vector products M ~!(Azx)

» want M 'z to be easy to compute (easier than A~ 'x)

> so generally one extracts some M ~ A that is easy to solve linear systems with

> however, M ~ A may be insufficient/unnecessary, primary goal is to improve
conditioning to accelerate iterative methods, i.e., want k(M 1t A) « x(A)

» Common preconditioners select parts of A or perform inexact factorization

» (block-)Jacobi preconditioner takes M to be (block-)diagonal of A

> incomplete LU (ILU) preconditioners compute M = LU ~ A (+pivoting)

» ILU variants constraint sparsity of L and U factors during factorization to be
the same or not much more than that of A

» good problem-specific preconditioners are often available in practice and
theory, applying also to problems beyond linear systems (eigenvalue problems,
optimization, approximate graph algorithms)



Newton’s Method

» Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f:



Nonlinear Least Squares
» An important special case of multidimensional optimization is nonlinear least
squares, the problem of fitting a nonlinear function f.(t) so that fg(t;) ~ vy;:

» We can cast nonlinear least squares as an optimization problem to minimize
residual error and solve it by Newton’s method:



Gauss-Newton Method
» The Hessian for nonlinear least squares problems has the form:

» The Gauss-Newton method is Newton iteration with an approximate Hessian:



Low Rank Matrix Approximation
» Given a matrix A € R™*" seek rank » < m,n approximation

» Eckart-Young (optimal low-rank approximation by SVD) theorem



Rank Revealing Matrix Factorizations
» Computing the SVD

» QR with column pivoting



Simultaneous and Orthogonal Iteration

» Orthogonal iteration computing many eigenvectors at once in an iterative
way



Orthogonal Iteration Convergence

» If A has distinct eigenvalues and R; has positive decreasing diagonal, the
jth column of Q; converges to the jth Schur vector of A linearly with rate
max(|Aj+1/A5], [Aj/Aj-1l).



Randomized SVD

» Orthogonal iteration for SVD can also be viewed as a randomized algorithm



Generalized Nystrom Algorithm

» The generalized Nystrom algorithm provides an efficient way of computing a
low-rank factorization given an approximation of its span3

3Nakatsukasa, Yuji, Fast and stable randomized low-rank matrix approximation, 2020.



Analysis of Generalized Nystréom Algorithm
» Consider F; = AST and F», = ASY, derive the minimizer Z to

|A— FZF]|p

» The generalized Nystrom algorithm may be interpreted as applying a
two-sided oblique projection of A
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